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THE MODULUS FUNCTION 

 
The modulus function, | x |.  

 
The modulus of x, |x| is defined as follows: 

 

|x| = x for x  0, e.g. |5| = 5. (i.e. |x| = x for positive x) 

|x| = -x for x < 0, e.g. |-2| = 2.  (i.e. |x| = -x for negative x)   

 

It can also be described as the 

magnitude of a number, 

disregarding the sign, and it never 

takes a negative value.  

  

The expression |x-a| can be 

interpreted as the distance between 

two numbers x and a on the number 

line.  

 

The statement  |x-a| < b is another way of saying that the distance between x and a is less than b.  

 

x must lie between the vertical lines, in other words a - b  <  x  < a + b.   

 
 

 

 

The graph of y = |x| is therefore identical to 

the graph of y = x when x is positive. (The 

illustrated graph of y = x is offset slightly to 

show the relationship.) 

 

When x is negative, the graph of 

 y = |x| is a reflection of the graph of  y = x in 

the x-axis.   
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Modulus of a function, | f (x) |. 

 

Example (1): Sketch the graph of  y = (x-1)
2
 – 16, and from it sketch the graph of  y = | (x-1)

2
 – 16 | .  

 

 

The function 

 y = (x-1)
2
 – 16 is a quadratic with roots of –

3 and 5, and a minimum point of (1, -16). It 

is therefore below the x–axis for –3 < x < 5.    

 

When we take the modulus of this function, 

all positive values of y remain unchanged, 

but  negative values are multiplied by –1. 

  

The two graphs show this clearly.  

 

Where the original function  

(x-1)
2
 – 16 takes a positive value, the graphs 

of the two functions coincide. 

 

However, where the original function , 

(x-1)
2
 – 16 , takes a negative value, then the 

corresponding part of the graph of 

| (x-1)
2
 – 16 | is a reflection of the original in 

the x-axis.  

 

 

 

The graph is accurate here, but examination questions would generally only require a sketch with the 

key points clearly shown. In this case they would be (-3, 0), (5, 0), (1, 16)  and (1, -16). 
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Example (2): Sketch the graph of  y = sin x° for –2  x  2, and from it sketch the graphs of  

y = | sin x | and  y = sin (|x|). What can you say about the two resulting graphs ?  

 
 

The graph of  y = | sin x |  coincides with that of  y = sin x whenever  sin x is positive, but is a reflection 

of y = sin x in the x-axis whenever sin x is negative. 

 

 

 
The graph of  y = sin |x |  coincides with that of  y = sin x whenever  x is positive, but is a reflection of  

y = sin x in the y-axis whenever x is negative. 

 

It can be seen that the the graphs of y = | sin x | and  y = sin (|x|) are different. 

 

This holds true for most functions, i.e | f (x) | f ( | x | ).

 

. 
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Example (3):  
 

i) Sketch the graph y = | ln x |. 

ii) State the domain and range of f (x) = ln | x |.  

 

i) Recall the characteristics of 

the graph of  y = ln x. 

 

The x – intercept is at  (1, 0), 

there is an asymptote at x = 0 

and the function is undefined for 

x 0.  

  

The graph of  y = | ln x | 

coincides with that of y = ln x 

for x 1, but is a reflection of  

 y = ln x in the  y-axis for  

0 < x  < 1. 

 

ii) The domain of f (x) = ln | x | 

consists of all the non-zero real 

numbers, and its range consists 

of the entire set of real numbers.  

 

 

 

The function ln (|x|) and related functions such as log10(|x|) have important applications in calculus, and 

can also be used as a ‘workaround’ to solve certain equations involving logarithms. 

 

Example (4): Solve log( a + 10 ) = 2 log( |a – 10| ). 

 

This is almost the same as an example from an earlier section, but we are dealing with logarithms of 

the modulus of the number a - 10.  

 

The base of the logarithm is immaterial here ! 

 

log( a + 10 ) = 2 log( |a – 10| )   log( a + 10 ) = log(( a – 10)
2
)  using log laws. Note that there is no 

need to put a modulus around the squared term, since the square of any real number is positive.    

 

Hence a + 10 = (a – 10)
2
  (taking antilogs) 

 

This rearranges into a standard quadratic: 

 

a
2
 – 20a + 100 – (a + 10) = 0  

 

 a
2
 – 21a + 90 = 0  

 (a – 15) (a – 6)  = 0  

a = 15 or 6. 

 

The equation has solutions of a = 15 and a = 6. 

 

Substituting  a = 15 into the original would give log 25 = 2 log 5.  

With a = 6, we have log 16 = 2 log ( |-4| ) or log 16 = 2 log 4 , which is also allowable. 

 

(Had the question been about solving log( a + 10 ) = 2 log( a – 10 ), without the modulus sign,  a = 6 

would not have been a solution, as the expression would have become log 16 = 2 log ( -4 ), and there is 

no logarithm of a negative number.)   
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The graphs of  | x | and related functions can be transformed in the same way as those of other 

functions.  

 

Example (5): Sketch (on separate diagrams), the  graphs of  y = | x | - 3  ,  y = | x  - 3 |  and  y  = | 2x |.  

 

  

Here, the graph of  y = | x | - 3 is that of  y = | x |  translated by the vector 









 3

0 . 

The graph of  y = | x - 3 | is that of y = | x |  translated by the vector 









0

3 . 

The two graphs are therefore quite different.  

 

 

 

 

The graph of y = | 2x | is that of y = | x | , but stretched by 

a factor of  ½  in the x-direction. 

 

 

Note that the graph of  y = | 2x | is the same as that of  y = 

2| x |, but this assumption is generally false for most 

functions.  
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Solving equations  involving the modulus function.  

 

Example (6): Find the solutions of the equation  |(2x – 1)| = 5. 

 

Looking at the graphs, we can see that   |(2x – 1)| coincides with 2x  - 1 whenever 2x – 1  0, or x ½ .  

 

When 2x – 1  0, i.e. when x < ½,  

the graph of |(2x – 1)| coincides with that of 2x – 1 

reflected in the x-axis. 

 

Reflection in the x-axis is equivalent  to 

multiplying the original function by a factor of –1, 

and so that part of  the graph of |(2x – 1)| coincides 

with that of  –(2x – 1), or 1 – 2x. 

 

There are thus two solutions of   

|(2x – 1)| = 5. 

 

The first  is the ’obvious’ one satisfying 2x – 1 = 5, 

or x  = 3. 

 

The second is the one satisfying 

1 – 2x = 5, or x = -2.  

 

Looking at the graphs, though, suggests another 

way of finding the second solution. 

The point (-2, 5) on the graph of |(2x – 1)| 

corresponds to the point (-2, -5) on the graph of  2x – 1.  

 

Instead of multiplying the LHS by –1 to give 1 – 2x = 5 , we could multiply the RHS by –1 to give  

2x – 1 = -5, again leading to x  = -2. 

 

From this example, we can deduce that the solution(s) of the equation | f (x) | = k    

can be found by solving two separate equations:  

 

 The ‘obvious’ one(s) of   f (x)  = k  

 The ‘alternative’ one(s) of  - f (x)  = k , which can in turn be rewritten as  f (x)  = -k.  

 

 

Example (7): Find the solutions of the equation  |(4x + 3)| = 11. 

 

The first solution is the “ f (x)  = k” form, namely  4x + 3 = 11  4x = 8  x = 2. 

 

The second solution can be found either by solving  

 

4x + 3 = -11  4x = -14  x  = 3½ , multiplying RHS by – 1 ( “ f (x)  = -k” form), 

 

or  

 

 –(4x + 3) = 11  -4x – 3 = 11  -4x = 14  x  = -3½, multiplying LHS by –1  ( “- f (x)  = k” form). 

 

The first method is easier to use.  
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Example (8): Find the solutions of the equation  |(x
2
 – 2x - 7)| = 8. 

 

This is a quadratic, but the same method can be used as for linear examples.  

 

The first solution set can be found by solving  x
2
 – 2x - 7 = 8 or  x

2
 – 2x - 15 = 0, which in turn 

factorises to (x + 3) (x – 5) = 0, giving solutions of x = 5, x = -3.  

 

The second solution set can be found by solving either or x
2
 – 2x - 7 = -8 or  -(x

2
 – 2x – 7) = 8. 

Both methods give the same result.     

 

x
2
 – 2x – 7 = -8      

x
2
 – 2x – 7 = -8   x

2
  - 2x + 1  = 0 

  (x - 1)
2
 = 0 (factorising), giving a solution of x = 1.  

 

-(x
2
 – 2x – 7) = 8      

-(x
2
 – 2x – 7) = 8   - x

2
  + 2x + 7  = 8  - x

2
  + 2x - 1  = 0   

  x
2
 - 2x + 1 = 0 (multiplying both sides by –1 to make x

2
 term positive) 

  (x - 1)
2
 = 0 (factorising), giving a solution of x = 1.  

 

The first method is better, as the algebra works out much simpler.  



 The solutions of  |(x
2
 – 2x - 7)| = 8 are x = 1, x = 5  and x = -3.  

 

The solutions to the equation can be illustrated graphically. 

 

The first method (left) shows the graph of the function x
2
 – 2x – 7.  

Its modulus is equal to 8 when its value is either 8 or –8. 

The parabola meets the line y = 8 when x = –3 or x = 5, and meets the line y = -8 when x = 1. 

 

The second method (right) shows the graph of the function  |(x
2
 – 2x - 7)|. 

It is coincident with the graph of  x
2
 – 2x – 7 when x

2
 – 2x – 7 0. 

However, when x
2
 – 2x – 7 <0, the graph of |(x

2
 – 2x - 7)| coincides with the graph of -(x

2
 – 2x – 7). 

(The negative part of the original graph of x
2
 – 2x – 7 has been included for reference).   

 

The graph of  |(x
2
 – 2x - 7)| meets the line y = 8 when x = –3 , 1 or  5. 
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Example (9): Find the solutions of the equation  |(x
2
 – 5x - 1)| = 5. 

 

The first solution set can be found by solving  x
2
 – 5x - 1 = 5   x

2
 – 5x - 6 = 0, which in turn 

factorises to (x + 1)(x – 6) = 0, giving solutions of x = 6, x = -1.  

 

The second solution set can be found by solving  x
2
 – 5x - 1 = -5 (easier option).  

 

x
2
 – 5x – 1 = -5      

x
2
 – 5x – 1 = -5   x

2
  - 5x + 4  = 0 

(x - 4)(x -1) = 0 (factorising), giving solutions of x = 4, x = 1. 

 

 The solutions of  |(x
2
 – 5x - 1)| = 5 are x = -1, x = 1, x = 4 and x = 6. 
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Example (10): Find the solutions of the equation  |(x + 1)| = |2x|. 

 

This example is different, because we have a modulus function of x on both sides of the equation.  

 

Nevertheless, we can still solve the equation in a similar way to those of the form | f (x) | = k. 

    

The solution(s) of the equation | f (x) | = | g(x) | can be found by solving two separate equations:  

 

 The ‘obvious’ one(s) of   f (x)  = g (x)   

 The ‘alternative’ one(s) of  - f (x)  = g (x)  , which can in turn be rewritten as  f (x)  = - g (x) .  

 

 

The first solution is that of  

 x + 1 = 2x x = 1.  

 

The second solution can be found 

either by solving  

 

–(x + 1) = 2x ;   

 -x – 1 = 2x 

  -1 = 3x    x  = 
3
1  

 

or 

  

x + 1 = -2x ;  

x + 1 = -2x  

 3x + 1 = 0  x  = 
3
1 . 

 

(The second form is easier).  

 

 

 

 

Another method would be to square both sides of the equation and solve as follows; 

 

|(x + 1)| = |2x|   (x + 1)
2
 = (2x)

2   
. 

 

(Note that a squared quantity is always positive, so the modulus sign can be removed).   

(x + 1)
2
 = (2x)

2 x
2
 + 2x+ 1 = 4x

2   
. 

0  =  3x
2 
- 2x- 1. 

 

Factorising the quadratic gives 3x
2 
- 2x- 1= 0 (3x + 1)(x – 1) = 0. 

The roots, and thus the solutions of  |(x + 1)| = |2x|, are x = 1 and  x  = 
3
1 . 

 



Mathematics Revision Guides – The Modulus Function Page 11 of 15 

Author: Mark Kudlowski 

Care is required if we have a modulus function on one side of the equation, but a non-modulus function 

on the other, as the next two examples will show.   

 

Example (10a): Find the solutions of the equation  (x + 1) = |2x|. 

 

This is very similar to example (10), but this time we have a non-modulus function of x on one side of 

the equation, and a modulus function on the other.  

 

We will try the method of solving separate equations again:  

 

 The ‘obvious’ one(s) of   f (x)  = g (x)   

 The ‘alternative’ one(s) of  - f (x)  = g (x)  , which can in turn be rewritten as  f (x)  = - g (x) .  

 

 

Again, the first solution is that of  

 x + 1 = 2x x = 1.  

 

The second solution can be found by solving  

 

 

x + 1 = -2x ;  

x + 1 = -2x  

 3x + 1 = 0  x  = 
3
1 . 

 

There seems to be no difference between the 

solution to this example and that of Example 10.  

 

 

Or we can square both sides; 

 

|(x + 1)| = |2x|   (x + 1)
2
 = (2x)

2   
. 

 

(Note that a squared quantity is always positive, so 

the modulus sign can be removed).   

(x + 1)
2
 = (2x)

2 x
2
 + 2x+ 1 = 4x

2  
 

0  =  3x
2 
- 2x- 1. 

 

Factorising the quadratic gives 3x
2 
- 2x- 1= 0 (3x + 1)(x – 1) = 0. 

The roots, and thus the solutions of  (x + 1) = |2x|, are x = 1 and  x  = 
3
1 . 

 

Check:  x = 1;  x + 1 = 2, and |2x| = |2| = 2. 

Also:  x  = 
3
1 ;  x + 1  = 

3
2 , and  |2x| = |

3
2 | = 

3
2 .
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The next example is similar, but there is an important difference in the final result.  

 

Example (10b): Find the solutions of the equation  |(x + 1)| = 2x. 

 

It might be thought that if we followed the same technique as we did in Example 10a, then the 

solutions of  |(x + 1)| = 2x  would be x = 1 and  x  = 
3
1 . 

 

Checking the results gives:  

x = 1;  |(x + 1)| = 2, and 2x = 2. 

x  = 
3
1 ;  |(x + 1)| = 

3
2 , and  2x = 

3
2 . 

 

The second ‘solution’ seems to be incorrect here – if we were to plot the graphs, they will only 

intersect at the one point (1, 2), giving x = 1 as the only solution. 

  

 
 

 

Because the modulus function by definition is positive, then a ‘solution’ found using the earlier 

methods is only valid if substituting for x in the non-modulus function also gives a positive result.  

Hence the non-solution of x  = 
3
1 ;  |(x + 1)| = 

3
2 , and  2x = 

3
2 . 

 

 

In Example 10a, the  non-modulus function of (x + 1) returned a positive value for both values of x , so 

the two graphs met at two points, giving two solutions.  
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Inequalities involving the modulus function where one side is a number. 

 

Inequalities involving the modulus function are solved in a similar way to the corresponding equations, 

although care is needed with sign reversals.  

 

Example (11): Find the solutions of the inequality |(4x + 3)| < 11. 

 

The first solution set is the ‘obvious’ one of  4x + 3 < 11  4x < 8  x < 2. 

 

The second solution set can be found either multiplying the LHS by – 1 or the RHS by -1. 

 

Multiplying LHS by -1:  

–(4x + 3) < 11  -4x – 3 < 11  -4x < 14  x  > -3½. (We had to reverse the sign in the last step, 

when we divided by -4).  

 

Multiplying RHS by -1 plus an immediate inequality sign reversal:  

 

4x + 3 > -11 4x > -14  x  > -3½ . 

 

The two solution sets can be combined to give -3½ < x < 2.  

 

Whenever the second solution set is found by reversing the quantity on the opposite side of the 

inequality sign, then the direction of the inequality sign must also be reversed.  
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Example (12): Find the solutions of the inequality |(x
2
 – 5x - 1)|   5. (This is a modification of 

Example (9)).  

 

The first solution set can be found by solving  x
2
 – 5x - 1  5   x

2
 – 5x - 6 0, which in turn 

factorises to (x + 1)(x – 6)  0, giving two solution sets of x 6, x  -1.  

 

The second solution set can be found by solving  x
2
 – 5x - 1  -5. Again, as we have reversed the sign 

of the quantity on the RHS, the inequality sign also had to be reversed.  

x
2
 – 5x – 1 -5      

x
2
 – 5x – 1  -5   x

2
  - 5x + 4   0 

(x - 4)(x -1)  0 (factorising), giving the solution set of  1   x   4. 

 

 The solution sets of  |(x
2
 – 5x - 1)|  5 are x  -1, 1  x  4 and x  6. 
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Inequalities involving the modulus function where there are modulus expressions on both sides. 

 

Example (13): Find the solutions of the inequality |(x + 1)| > |2x|. (Modification of Example (10)). 

 

This time we have an algebraic expression on both sides of the inequality. We can therefore either:  

 

i) solve the corresponding equation,  sketch the graphs of the two functions and find where the graph of 

|(x + 1)| lies above the graph of |2x|,  or 

 

ii) square both sides, solve the related quadratic equation,  plot its graph, and from there solve the 

inequality.   

 

Method (i):  

 

The solutions to the corresponding 

equation  | x + 1| = | 2x | are  

 

x = 
3
1  and x = 1. 

 

The graph of  | x + 1| is above the 

graph of  | 2x | for the solution set of  

 

3
1  < x  < 1.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Method (ii) – squaring both sides 

|(x + 1)| > |2x|   (x + 1)
2
 > (2x)

2   
. 

 

 (x + 1)
2
 > (2x)

2 x
2
 + 2x+ 1 > 4x

2 



0  >  3x
2 
- 2x- 1 3x

2 
- 2x- 1 < 0. 

 

Factorising the corresponding quadratic 

gives 3x
2 
- 2x- 1= 0 (3x + 1)(x – 1) = 0. 

The roots, and thus the solutions of 

 |(x + 1)| = |2x|, are x = 1 and  x  = 
3
1 . 

 

The sketch right shows the solution set of 

the inequality  3x
2 
- 2x- 1 < 0 , 

 

 or 
3
1  < x  < 1.  

 

 


