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Rational Expressions. 

 

A rational expression is an algebraic fraction of the form 
)(

)(

xQ

xP
  

where P(x) and Q(x) are polynomials in x. 

 

It is often possible to simplify a rational expression by factorising P(x) and Q(x) wherever possible, and 

cancelling any factors appearing in both the numerator and denominator.  

 

Example (1): Simplify 
4

162





x

x
. 

Factorising the numerator gives 
4
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

x

x
 

4

)4()4(





x

xx
   4x .     

 

Although we have simplified the expression, the functions   f (x)  = 
4

162





x

x
 and  g (x) = 4x  are 

not equivalent ! 

 

g (-4) =  -8,  but f (-4) is undefined, due to division by zero.  

 

Hence  x = -4 is in the domain of f  but not in the domain of g.   

 

The graph of  y  =  g (x)  is the straight line y = x – 4. 

 

 

On the other hand, the graph of y = f (x) (right) 

 is the same line with a gap in it, at (-4, -8) !    

 

 

 

 

 

 

These issues are not usually part of exam questions to do 

with simplifying rational expressions, but they have 

been included for the sake of awareness. 

 

(Such domain issues are ignored in the rest of the 

section).  
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Example (2):  Simplify  
20

123
2

2





xx

xx
.  

Factorising both top and bottom of the expression gives 
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3
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x
.    This cannot be simplified any further. 

 

Example (3):  Simplify  
234
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10155
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


. 

 

This can be simplified in two stages: first cancel out a factor of 5x
2 
, and then factorise.  
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Example (4):  Simplify  
x

x




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This example uses the ‘difference of squares’ result.  

 

x

x





3

182 2

 = 
x

x





3

)9(2 2
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x
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
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3
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= 

x
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3

)3()3(2
= )3(2  x . 

 

Notice the final step of the simplification: we multiplied (x-3) by -1 to obtain (3-x), and brought the 

minus sign outside the brackets.  
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Addition and subtraction of algebraic fractions. 

 

 

Always use the L.C.M. of the denominators when adding and subtracting algebraic fractions. 

Factorise the denominators when necessary. 

 

Example (5): Express 
3
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
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 xx
 as a single fraction. 
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Example (6): Express 
xx 


 3

5
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3
 as a single fraction. 
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Example (7):  Express 
4
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 as a single fraction. 
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Multiplying and adding out the top line and collecting like terms gives  
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Example (8): Express 
107

3
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4
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 as a single fraction. 

 

Here we must factorise the denominators to find the L.C.M.  The expression factorises out into   
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. 

 

This gives an L.C.M. of (x+2) (x-3) (x+5). (Note that (x+5) is a common factor of both denominators). 

 

The expression becomes 
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Example (9): Express 
16

3
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2
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as a single fraction. 

 

Factorising out the denominators we obtain 

)4()4(
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, giving an L.C.M. of (x+1) (x-4) (x+4). 

 

 (Note that x+4 is a common factor of both denominators). 

 

Multiplying out, we get 
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Example (10):  Express 
4
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 as a single fraction. 

 

Since x
2
 + 6x + 9 factorises out into (x + 3)

2 
, the L.C.M. of the denominators is (x – 4)(x + 3)

2
. 

 

The required expression is thus 
2
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= 
2

22

)3()4(

)27183()12()82(





xx

xxxxx
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