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Further Integration Techniques. 
 

 

Trigonometric Integrals. 

 
We have already met several trigonometric integrals in earlier sections. The following two are typical 

examples. 

 

Example (1):  Find 
2/ 

6/ 

4   cossin2



dxxx . 

(Remember – radian measure must be used !)  

We can use the tabled result  xxn cossin cxn

n




1

1
1 sin  

and obtain the answer 2 
5
1 sin

5
x+ c  

5
2 sin

5
x+ c. 

 

Alternatively, we can look at the integral and notice that it includes a power of sin x (the fourth power) 

multiplied by its derivative – a chain rule result.  

 

We can thus guess that the integral will be something like sin
5
x (compare integrating x

4
 to get 

5
1 x

5
 ). 

 

Differentiating sin
5
x gives  5 sin

4
x cos x, but our original integral was 2 sin

4
x cos x. The guess is too 

large by a factor of 
2
5  , so we need to multiply it by 

5
2 to bring it to scale .  

This gives  
5
2 sin

5
x+ c as before. 

This is a definite integral, so its value is   2/ 

6/ 

5

5
2 sin




x  )1(

32
1

5
2    

80
31 . 

(Remember: sin /2 = 1; sin /6 = ½).  

 

Example (2):  Find  dxxx   tansec4
. 

We can use the tabled result  xxn tansec cxn

n
sec1  

and obtain the answer 
4
1 sec

4
x+ c . 

 

Alternatively, we can rewrite the integrand as sec
3
x sec x tan x , thus showing the product of the cube 

of sec x and its derivative, sec x tan x, more clearly.  This suggests an answer of the form sec
4
x. 

 

Differentiating  sec
4
x gives 4 sec

3
x sec x tan x  4 sec

4
x tan x. This result is too large by a factor of 4, 

therefore the true integral is 
4
1 sec

4
x+ c as above. 
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There are also many other trigonometric integrals which can be evaluated by using identities and 

compound angle formulae to simplify complicated integrals into forms which are easier to integrate.   

 

The double angle formulae for cos 2A are especially useful.  

 

cos
2A+ sin

2A= 1    (This is the Pythagorean identity) 

1 + tan
2
A sec

2
A

cot
2
Acosec

2
A      

 

sin (2A) = 2 sin A cos A  

cos (2A) = cos
2
A - sin

2
A   

 = 2 cos
2
A – 1 

 = 1 - 2 sin
2
A  

tan (2A) =  2 tan A 

  1-tan
2
A 

 

(From the formula for cos 2A). 

 

cos
2 
A  = ½(1 + cos 2A) 

sin
2 
A  = ½(1 - cos 2A) 

 

The triple angle formulae for cos (3A) and sin (3A) also crop up at times:  

cos 3A = 4 cos
3
A –3 cos A. 

sin 3A = 3 sin A  - 4 sin
3
A. 

 

)3coscos3(cos
4
13 AAA   

)3sinsin3(sin
4
13 AAA   

 

Examination questions on trigonometric integrals of this type generally have an introductory hint as to 

the correct method to be used, and are not quite as difficult as some of the examples here.  

   

Example (3): Find  dxxx  3cos3sin .  

This integrand is based on the double-angle formula for sin 2A: sin 2A = 2 sin A cos A. 

Let A = 3x, and the integrand becomes  dxx 6sin
2
1   evaluating to .6cos

12
1 cx   (The working is 

as in previous examples). 

 

Interestingly, we could have guessed an integral of the form of  sin
2
(3x) and differentiated it to give 

 6 sin(3x) cos (3x), and then scaled the final result to obtain 
6
1  sin

2
(3x) + c. Those seemingly different 

results make sense because 
6
1  sin

2
(3x)  =   x6cos1

12
1 , in other words, they differ by the constant 1.  

 

Example (4): Find      dxxx  sincos
2

2

2

2
. 

This time we have the formula cos 2A = cos
2
 A – sin

2
 A  in disguise.  

Let A = 
2
x , and the integrand becomes simply  dxx cos or sin x + c. 

 

Example (5): Find 
3/ 

0 

2  tan


dxx . (Leave the result in surds and terms of 

Here we use the identity tan
2
 x = sec

2
 x – 1, to get  

3/ 

0 

2  1 sec


dxx . 

This is a standard integral : the result is   3/ 

0 tan


xx   
3

3  . 

(Remember: tan (/3) = 3). 
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Integration of powers of sin x and cos x. 

 

These integrals crop up quite frequently, but they come in two types:  

 

Even powers of sin x and cos x only  

 

If the expression is an even power of sin x or cos x (or a product of the two), the technique is to rewrite 

the integral as a product of terms in cos
2
x and /or sin

2
x. 

 

From there, we can use the formulae for cos 2x to replace occurrences of cos
2
x with  ½(1 + cos 2x),  

and  occurrences of sin
2
x with  ½(1 - cos 2x). These forms are easier to integrate.  

   

Example (6): Find  . cos 2 dxx  

The integrand simplifies into ½(1 + cos 2x),  

giving a result of  xx 2sin
2
1

2
1   .2sin

4
1

2
1 cxx   

 

Example (7): Find 
4/ 

0 

4 . sin


dxx  

Rewrite the integrand as  22sin x  =   2
2
1 )2cos1( x . 

This expands to ))2(cos)2cos(21( 2

4
1 xx  , but there is still an inner term in cos

2
(2x) which 

needs simplifying: namely cos
2
(2x) = ½(1 + cos 4x). 

 

The final expansion of the integrand therefore gives ))4cos(1()2cos(21(
2
1

4
1 xx   

or ))4cos()2cos(43(
8
1 xx  . 

 

This can now be integrated to give   4/ 

0 4
1

8
1 ))4sin()2sin(23(


xxx   

   4/ 

0 32
1

4
1

8
3 4sin2sin


xxx   =    00

4
1

32
3    = 

32
83  . 

 

(Remember: sin /2 = 1; sin  = 0) 

 

Example(8): Find  .  cossin 22 dxxx  

Rewrite the integrand as   )2cos1()2cos1(
2
1

2
1 xx  . 

This simplifies into the ‘difference of squares’ form of ))2(cos1( 2

4
1 x  ))2((sin 2

4
1 x . 

The resulting integrand can be simplified again to   ))4cos(1(
2
1

4
1 x    )4cos(1

8
1 x  

 

Integration gives   cxx  )4sin(
4
1

8
1  = cxx  )4sin(

32
1

8
1 . 

 

Example(9): Find  .) 2(cos 4 dxx  

Rewrite the integrand as  22 )2(cos x   2
2
1 ))4cos(1( x . 

This expands to ))4(cos)4cos(21( 2

4
1 xx  , and then we replace cos

2
(4x) = ½(1 + cos 8x). 

The final expansion of the integrand therefore gives ))8cos(1()4cos(21(
2
1

4
1 xx   

 ))8cos(1)4cos(42(
8
1 xx  . 

 

This can now be integrated to give ))8sin()4sin(2(
8
1

8
1 xxxx   

 cxxx  )8sin()4sin(
64
1

8
1

8
3 . 
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At least one power of sin x or cos x is odd. 
 

If the expression has at least one odd power of sin x and/or cos x, we use the identity cos
2
x + sin

2
x= 1 

to convert the expression into a form which contains terms of the form sin
n
 x cos x and/or  cos

n
 x sin x. 

 

These forms are ‘reverse chain rule results’ which integrate to 
1

1
n

sin
n+1

x + c and 
1

1
n

cos
n+1

x + c. 

 

Example (10): Find 
2/

0

5  sin


dxx . 

Rewrite the integrand as sin
4
x sin x, and thus as (1-cos

2
x)

2
 sin x. 

 

Expansion by the binomial theorem gives (1 - 2 cos
2
x + cos

4
x) sin x.  

 

The integrand then becomes a sum of ‘reversed chain rule’ results: 

 

 
2/

0

42  sincossincos2sin


dxxxxxx  

 

This integrates to   .coscoscos
2/

0

5

5
13

3
2


xxx   

 
15
8

5
1

3
2 )1()0(  . (Note cos (/2) = 0, cos 0 = 1). 

 

 

Some integrals can be evaluated using alternative methods:  

 

Example (11): Find 
2/ 

0 

3 . cos


dxx  

 

Method 1: Rewrite the integrand as cos
2
x cos x, and thus as (1-sin

2
x) cos x. 

 

The integrand thus becomes: 

 
2/ 

0 

2  cossin cos


dxxxx  

Integration gives    2/ 

0 

3

3
1 sinsin


xx     

3
2

3
11  . (Note sin (/2) = 1). 

 

Method 2: Use the triple angle formula:  

 


2/ 

0 

3  cos


dxx   =    
2/ 

0  4
1 ) 3coscos3(



dxxx  =   2/ 

0 12
1

4
3 3sinsin


xx   

 

 
3
2

12
1

4
3  . (Note sin (/2) = 1, sin (3/2) = -1). 

 

Example (12): Find  .  sincos 43 dxxx  

Rewrite the integrand as as sin
4
x (1-sin

2
x) cos x     dxxxxx  cossincossin 64

, 

which integrates to .sinsin 7

7
15

5
1 cxx    
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Other applications of logarithmic integrands.  

 

Some trigonometric integrands can also lend themselves to a logarithmic function when integrated.  

 

Examples (13) : Using the fact that the derivative of sec x is sec x tan x or otherwise, find  i) 

 dxx tan  

and use the result to ii) evaluate 
3/ 

0 

3  tan


dxx .  

 

In i) we can rewrite the identity 
x

xx
x

sec

tansec
tan  , giving us an integrand where the top line is the 

derivative of the bottom line.  

 

  dxx tan = ln  |sec x | + c.  

 

Alternatively, we could have used the identity 
x

x
x

cos

)sin(
tan


 , again giving us an integrand 

where the top line is the derivative of the bottom line. 

  

  dxx tan = - ln  |cos x | + c. 

 

The two integrals are equivalent since cos x and sec x are reciprocals of one another.  

 

For part ii) we rewrite the integrand as (sec
2
 x – 1)(tan x) or  

3/ 

0 

2  tansectan


dxxxx  

Using the reverse chain rule (as in ‘Trigonometric Integrals’) and the result from part i) of the question, 

we have the integral   3/ 

0 

2

2
1 )ln(sectan


xx  or 2ln

2
3  . 

 

There is no need to include the modulus sign around the logarithm, since sec x > 0  for  x in the range.  

Note tan (/3) = 3; sec (/3) = 2 ; sec(0) = 1. 

 

With some other rational integrands, the top line might not be exactly the derivative of the bottom line, 

but we can use inverse trig functions and algebraic adjustment. 

 

Example (14):  Find the value of  

1 

0  2 1

42
dx

x

x
.          Hint: 

2

1

1

1
)(tan

x
x

dx

d




.  

 

The derivative of the denominator is 2x, but the numerator is ‘not quite right’ for the integral to be a 

straightforward logarithmic result. 

 

We can however rewrite the integrand as    




1 

0  22 1

4

1

2
dx

xx

x
. 

The first term of the integrand is now a valid logarithmic function and the second term an inverse trig 

function, giving an integral of  

 

 1 
0 

12 tan4)1ln( xx  =   2ln)1(ln)2(ln . 

 

There is no need to include the modulus sign around the logarithm, since x
2
 + 1 > 0 for all x.  

 

(Remember tan
-1

(1) = /4).  
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Sometimes a quadratic denominator can be factorised and the integrand rewritten in partial fractions.   

Examples (15): Find the value of : i) dx
xx

x
 

65

94
2 


 ; ii)  


dx

xx

x
 

2

7
2

 ;  

iii) dx
xx

x
 

12

546 

5  2 


, giving the result as a single logarithm.  

 

None of the integrands have the top line equal to a multiple of the derivative of the bottom line, but 

each can be re-expressed in partial fractions.  

 

In i) the denominator can be factorised to (x-2)(x-3) and the integrand rewritten as 

dx
xx

 
3

3

2

1
 




. 

 

(Full working is in Example (1) of the document ‘Partial Fractions’). 
(Copyright OUP, Understanding Pure Mathematics, Sadler & Thorning, ISBN 9780199142590, Exercise 18A, Q.1 ) 

 

 

The integral is therefore ln ( |x-2| ) + 3 ln ( |x-3| ) + c.  

 

This same result can also be expressed as   cxx  |)3)(2(|ln 3
or  |)3)(2(|ln 3 xxA  

where A is non-zero.  

 

In ii) the denominator can be factorised to (x-2)(x+1) and the integrand rewritten as 

dx
xx

 
1

2

2

3
 




. 

 

(Full working is in the opening paragraph of the document ‘Partial Fractions’). 

 

The integral is therefore 3 ln ( |x-2| ) - 2 ln ( |x+1| ) + c. 

 

This same result can also be expressed as c
x

x













|

)1(

)2(
|ln

2

3

or  











|

)1(

)2(
|ln

2

3

x

x
A where A > 0.  

 

 

In iii) the denominator can be factorised to (x - 4)(x+3) and the integrand rewritten as 

dx
xx

 
3

1

4

36 

5  



. 

 

(Full working is in Example (2) of the document ‘Partial Fractions’). 

 

The integral is therefore  6 

5 
)3ln()4ln(3  xx  

 =   6 

5 

3 )3()4(ln  xx  

 8ln72ln  

= ln 9.   

 
 


