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THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS 

 
The exponential function, ex. 

 
Exponential functions of the type 

 

 f (x) = a
x
 , where a is a non-zero 

positive constant,  have already been 

discussed in earlier sections.    

 

All exponential functions have graphs 

crossing the y-axis at the point (0, 1) 

as would be expected of the zero 

index law, but there is one particular 

case of the exponential function 

whose graph has a gradient of 1 at the 

point (0, 1). 

 

This is known as the exponential 

function, and it is denoted by e
x
 where 

the base is an irrational number, e. 

The number e has an infinitely long 

but non-recurring decimal value, and 

its first few digits are 2.71828.    

 

Like all exponential functions with a 

positive base greater than 1, its value 

becomes increasingly large and 

positive as x increases, and 

increasingly small and positive as x 

decreases, but it never reaches zero.  

 

The exponential function e
x
 is unusual in having a gradient equal to the value of the function itself for 

all values of x. 

 

In other words, the derived function of e
x 
is e

x 
itself – a fact that will be studied in detail in further 

calculus sections.  
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The next graph shows the 

relationship between the functions 

y = e
x 
and  

y = e
-x

 .  

 

(Note that e
-x

 is the same as xe

1  
). 

 

The graph of  e
-x 

is the same as that 

of e
x
  reflected in the y-axis. 

 

Note how the function e
x
 is an 

increasing function for all x, and 

the function  e
-x

 is a decreasing 

function for all x.  
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The natural logarithmic function, ln x.  

 

An exponential function such as  f (x) = 10
x
 has a corresponding inverse function of f 

-1
 (x) = log10 x. In 

this example, the base of the logarithm is 10.  

 

The inverse function corresponding to  f (x) = e
x 
is  f 

-1
 (x) = ln x. This is called the natural logarithm 

of x, and is sometimes also written as loge x.  

 

Although the base of natural logarithms (e) is irrational, the laws of logarithms hold exactly as they do 

for rational bases like 2 or 10.  

 

Thus:  

 

ln a  + ln b = ln ab  

ln a  - ln b = ln b
a

  

n ln a = ln a
n
  

ln b
a

 =   - ln a
b

 

 

The graphs on the right show the 

relationship between the 

exponential function e
x
 and its 

inverse, the natural log function, 

or  ln x.  

 

Each is a reflection of the other 

in the line y = x .   

 

 

The functions e
x
 and ln x are 

handled just like other 

exponential and logarithmic 

functions. 

   

 

 

 

 

 

Examples (1): Express as single logarithms: i) 2 ln x + 4 ln y ; ii) 3 ln x - ½ ln y;  iii) (ln x) - 2 

 

i)  2 ln x + 4 ln y  = ln (x
2
y

4
) ;   ii)  3 ln x - ½ ln y = ln 















y

x3

;   iii) ln x – 2 = ln x -  ln (e
2
)  = 








2

ln
e

x
  . 

 

Examples (2): Solve the equations i) e
x
 = 20;  ii) e

x
 = 0.04; iii) ln x = 0.7. 

 

We take natural logs of both sides in the first two examples to obtain 

   

i) ln (e
x
) = ln 20 x = ln 20 x = 2.996 (to 3 d.p.) 

ii) ln (e
x
) = ln 0.04 x = ln 0.04 x = 3.219 (to 3 d.p.) 

 

In iii), we take exponents of both sides ( “e to both sides”) to obtain 

ln x = 0.7  x = e 
0.7

 x =2.014 (to 3 d.p.) 

 

Remember, e
ln x

 is simply x itself, as is ln (e
x
) !   
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Sometimes care is needed, as logarithm laws specific to one base do not hold in others.  

 

Examples (3): The values of ln 2 and ln 3 are 0.693 and 1.099 to 3 decimal places respectively.  

 

Use this result to find i) ln 6 ;  ii) ln 8 ;  iii) ln 0.5 ;  iv)  ln 200.  

Which of these results cannot be found without a calculator, given just the data in the question ? 

  

i)  6 = 2  3,   ln 6 = ln 2 + ln 3 = 1.792 (to 3 dp). 

ii) 8 = 2
3
, ln 8 = 3 ln 2 = 2.079 (to 3 dp). 

iii) 0.5 = ½,  ln (½) = -( ln 2) = -0.693 (to 3 dp). 

 

iv) This question was originally set in an earlier section. There the base of the logarithm was 10, and 

log102 was given as 0.301.  

 

There we used the multiplication law as well as recognising a power of 10 as the multiplier:  

200 = 100  2, and since 100 = 10
2
,  then log10100 = 2 and finally log10200 = 2 + log102 = 2.301.  

 

By using the base of 10, the logarithms of the integer powers of 10 were themselves integers, such as 

log10 100 = 2 , log10 1000 = 3 and log10 0.1 = -1.  

 

That assumption does not hold for natural logs, because we have changed the base from 10 to e.  

We cannot mix up logarithms in two bases to give a result like ln 200 = ln 2 + log10200, or 0.693 + 2.  

 

Therefore, without being given ln 100, the given data is insufficient to answer the question.  
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More on transformations of exponential and logarithmic graphs.  

 

Transformations of  exponential and logarithmic graphs have been covered in detail in the Core 2 

document on exponential functions.  

 

Here we show how exponential and logarithmic graphs to different bases are related to each other.   

 

Example (6): Study the graphs of  y = e
x
,  y = 2

x
, and y = 10

x 
. How are the transformed graphs related 

to that of e
x
 ?  How are the graphs of  10

x
 and  2

x 
related to each other ?  

 

 
We can see that the graph of  e

x 
is steeper than that of 2

x
, but less so than that of 10

x
.    

 

In fact, the three graphs are related by a series of x-stretches.  

 

Look at the points on the three graphs where y = e, and we can see how they are related by a series of 

stretches in the x-direction. Whereas the graph of  e
x
 passes through (1, e), the graph of 2

x
 passes 

through (1.44, e) and that of 10
x
  passes through (0.43, e).  

 

In other words, the graph of 2
x  

is an x-stretch of the graph of  e
x
 with a scale factor of about 1.44, and 

the graph of 10
x
 is an x-stretch of the graph of  e

x
 with a scale factor of about 0.43. 

 

Those figures appear difficult to interpret at first, but  we remember that  a
x 
 is equivalent to e

(x ln a)
 . 

 

Hence 2
x
 = e

x ln 2 
and 10

x
 = e

x ln 10
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We can now see that the graph of 2
x 
can be obtained from that of e

x
 by an x-stretch with factor 

2ln

1  or 

approximately 1.44, and that of 10
x
 from e

x
 by an x-stretch with factor 

10ln

1  or approximately 0.43. 

 

The graph of a general exponential function a
x
 can therefore be obtained from that of e

x
 by an x-stretch 

with factor 
aln

1 .  

 

 

Next, we look at the sets of points (1, 10) and (3.32, 10) as well as (2, 0.30) and (2,1). 

 

From the given details, it appears that the graph of 2
x 
can be obtained from that of 10

x
 by an x-stretch 

with factor 3.32, and 10
x
 from 2

x 
by an x-stretch with factor 0.30. 

 

This can be generalised further by making use of the change of base rule. 

 

The graph of a
x
 can be transformed into that b

x
 by an x-stretch with factor 

b

a

log

log . (The base of the 

logarithm is immaterial here, as long as it is consistent.) 

 

The graph of 10
x 
is an x-stretch of  the graph of 2

x
 , with factor

10ln

2ln , or log10 2,  about 0.30. 

Conversely, the graph of 2
x 
is an x-stretch of  the graph of 10

x
 , with factor

2ln

10ln , or log2 10,  about 3.32. 
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Example (7): Study the graphs of  y = ln x,  y = log2x, and y = log10x. How are the transformed graphs 

related to that of ln x ?  How are the graphs of  log10x and  log2x
 
related to each other ?  

 

 
 

 

We can see that the graph of  ln x
 
is steeper than that of log10x, but less so than that of log2x.    

 

In fact, the three graphs are related by a series of y-stretches.  

 

Look at the points on the three graphs where x = e, and we can see how they are related by a series of 

stretches in the y-direction. Whereas the graph of  ln x passes through (e, 1), the graph of log2x passes 

through (e, 1.44) and that of log10x passes through (e, 0.43).  

 

In other words, the graph of log2x
  
is a y-stretch of the graph of  ln x  with a scale factor of about 1.44, 

and the graph of log10x is a y-stretch of the graph of  ln x with a scale factor of about 0.43. 

 

By checking the points(10, 1) on the graph of  log10x and (10,  3.32 ) on the graph of  log2x, we can 

deduce that the latter graph is a y-stretch of the former by a scale factor of about 3.32. 

 

Similarly, by checking the points(2, 1) on the graph of  log2x and (2,  0.30 ) on the graph of  log10x, 

we can deduce that the latter graph is a y-stretch of the former by a scale factor of about 0.30. 

 

These results come from the change of base rule: 
a

x
xa

ln

ln
log    x

a
ln

ln

1
 . 
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Hence the graph of logax can be obtained from that of ln x by a y –stretch of factor of  
aln

1 . 

 

This last case can be generalised: the graph of logax can be transformed into that of logbx by a y-stretch 

with factor 
b

a

log

log .  

 

 

 

Exponential Growth and Decay. 

 

(This topic will be covered in extra detail under the section on Differential Equations).  

 

Many real-life situations can be modelled by exponential functions, especially if they are dependent on 

time.  Examples include:  

 

 The balance of an account paying fixed compound interest 

 Depreciation of a car  

 Increase of a population of bacteria  

 Radioactive decay     

 

 
 

The standard graphs modelling exponential growth and decay are shown above.  

 

Exponential growth has the equation y = Ae
kx  

and exponential decay,  y = Ae
-kx

. 

The constant A represents an initial value when  x = 0, and the positive constant k is a scale factor 

which transforms e
x
 into e

kx 
or e

-kx
. 

 

Because exponential growth and decay is usually dependent on time , the letter t is often used in 

preference to x to denote the variable. 
   

 




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Example (10): The table below records the population of a sample of bacteria over a four-day 

experimental period. 

  

Time in days,  t 0 1 2 3 4 

Bacterial population,  y 60 120 240 480 960 

ln y (for part iii) 4.094 4.787 5.481 6.174 6.867 

 

i) State the value of A, namely the bacterial population at t = 0 

 

ii) Using t = 4, express the relationship between the population of bacteria and the elapsed time in the 

form  y = Ae
kt  

. 

 

iii) What would the graph of ln y against t look like ? How do the gradient and y-intercept relate to the 

original question ?   

 

 

Note: The values for the bacterial population, y, can be seen at once to form a geometric progression 

whose first term, a, is 60 and whose common ratio is 2. We could therefore say that y =  60 2
t
.   

 

The question however asks for a different approach !  

 

i) The value of A, the initial population, is 60 bacteria when t  = 0.  

 

ii) When t = 4, the population of bacteria is 960, so we must solve Ae
kt
. = 960, i.e. find k given A = 60 

and t  = 4.  

 

Ae
kt  

= 960 e
4k  

= 960   16
60

9604 ke 

 

164 ke  16ln4 k  2ln16ln
4

1
k k = 0.69315. 

Hence  y  = e
0.69315t   

or e
(ln 2)t    

 

This is the same as saying  y  = 60 2
t
  because e

(ln 2) 
= 2. 
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iii) Starting with the expression (using the accurate value of ln 2 rather than the approximation) 

 

y  = e
(ln 2)t   

and taking natural logarithms of both sides, we obtain  

 

ln y  = lnt ln 2.  
  
 

This is the equation of a straight-line graph Y = mX + C where Y = ln y, C  = ln 60, m = ln 2 and  X  = t. 

 

 

The gradient of the line is ln 2 and the y-intercept is at (0, ln 60). 

 

 

This result can be generalised: for any graph  y = Ae
kt  

the equation of the graph of ln y against time  is  

 

ln y  =  ln A + kt  (for graphs with positive gradient, signifying growth), or 

ln y  =  ln A - kt  (for graphs with negative gradient, signifying decay). 
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Example (11): A second-hand car has a value of £9170 when it is one year old and £6470 when it is 

three years old. It is assumed that the depreciation rate is constant with age.   

 

i) Set up two equations of the form y = Ae
-kt

 using t  = 1 and t  = 3.  

 

ii) Hence find  k and A. What does A represent ?   

 

iii) What is the estimated value of the car after seven years ?  

 

 

i) Substituting t  = 1, y = 9170 gives Ae
-k 

= 9170; doing the same for t = 3 gives Ae
-3k 

= 6470. 

 

Dividing, 4173.1
6470

9170
3






k

k

Ae

Ae
e

2k  
= 1.4173, and therefore 2k  = 0.34876 and k = 0.17438. 

 

Substituting for k in the expression with t = 1, we now have  Ae
-kt 

= Ae
-0.17438 

 =  9170. 

 

Hence, A = 10917
8400.0

91709170
17438.0


e




We could also have said that A = 9170 e

0.17438
 = 10917 , as dividing a quantity by e

-x
 is the same as 

multiplying it by e
x
.  

 

The quantity A represents the value of the car, namely £10917, when t = 0, i.e when the car is new. 

 

The final expression for the value of the car is therefore  y = 10917e
-0.17438t 

. 
 

iv)  To find the value of the car after seven years, we substitute t  = 7 into the equation from the final 

part of ii): 

 

y = 10917e
-0.17438t 

  y = 10917e
-1.2206 

  y = £3221.  

 
The car is thus worth £3221 after seven years. 
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Compound interest example.  

 

Example (12a): A building society offers a savings account with a five-year fixed interest rate 

equivalent of 3.6% per annum, compounded annually.  How much interest would accrue on this 

account after five years, assuming a one-off initial deposit of £10,000 ?  

 

After zero years, with t = 0,  we can substitute Ae
kt  

= 10000,  and therefore A = 10,000, as  e
kt
 = 1 for 

all k when t = 0.  

 

After one year, t  = 1, Ae
kt  

= 10000 plus 3.6%, or £10,360.  We thus solve  

 

 Ae
k  

= 10360 e
k  

= 10360   036.1
10000

10360
ke 

 

Taking natural logarithms of both sides, k  = ln 1.036 = 0.035367



After five years , with t  = 5, the total sum invested, or  Ae
5k 

, is e
  0.176836 

, or £11934.35. 

 

The accrued interest after 5 years is therefore £1934.35. 

 

Example (12b):  A rival building society offers similar savings accounts to the previous examples with 

a five-year fixed interest rate equivalent of 3.6% per annum, but this time compounded at 0.9% every 

quarter. How much interest would accrue on that account ?    

 

The value of A is 10000 as in Example 12(a).  

After one quarter, t  = 1, Ae
kt  

= 10000 plus 0.9%, or £10,090.  

 

Reckoning as in (7a), k  = ln 1.009 = 0.0089597



After five years, or 20 quarters , with t  = 20, the total sum invested, or  Ae
20k 

, is e
  0.179195 

, or 

£11962.54.  This is the same as 10000 (1.009
20

). 

 

The accrued interest after 5 years is therefore £1962.54 – higher than if the interest were compounded 

only once per year . 

 

Note - We could repeat the last example by compounding the interest over ever-smaller time intervals, 

such as dividing the 3.6% into twelve payments of 0.3% every month to give a final value of 

10000 (1.003
60

) or £11968.95. 

 

There is in fact a limiting value where the interest is accrued continuously, but this is not in scope of 

the section. As a matter of interest (no pun intended !), this limiting value is £11972.17.  
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Example (13): The population of toads at a reserve near Southport was estimated at 520 at the start of 

2002 and 740 at the start of 2007. 

 

Use these values to i) find an exponential function to model the population growth; ii) use the function 

so obtained to estimate the toad population at the start of 2010;  iii) estimate when the population 

reached 1000. 

 

i) Using the start of 2002 as the zero point, we can substitute A = 520, as  e
kt
 = 1 for all k when t = 0.  

Five years later, at the start of 2007, with t = 5, the population had risen to 740, so we now have to 

solve  

 

 Ae
5k  

= 740 e
5k  

= 740  
26

37

520

7405 ke 

 

Taking natural logarithms of both sides,   









26

37
ln5k   07056.0

5

ln
26
37

k .  

 

The toad population can therefore be modelled by the expression P = 520e
0.07056t   

where t is the number 

of years since the start of 2002.  

 

 

ii) There is a time difference of 8 years between the start of 2002 and the start of 2010, so we substitute 

t = 8 into the exponential growth equation.  

 

The toad population at the start of 2010 is 520e
0.07056 8   520e

0.5645 
, or 914 to the nearest integer.  

 

iii) Here we need to find the value of t to solve
 
520e

0.5645 t
  = 1000. 

 

Hence, 
13

25

520

100007056.0.0 te  









13

25
ln07056.0 t 

07056.0

)ln(
13
25

t 


Therefore t = 9.27 years or 9 years 3 months, and so the toad population reached 1000 at about April 

2011.   
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Example (14):  Two collectors, Tony and David, decided to invest in antiques and collectibles in 

January 1982. Tony invested £1500 and David £1200. When the portfolios were valued 25 years later 

in January 2007, Tony’s investment was valued at £18,000 and David’s at £22,800. 

 

i) Show that Tony’s investment grew at an annual  rate of 10.45%  between his purchasing and the 

valuation, and also express the value of Tony’s investment in the form  I = Ae
kt  

. 

 

ii) Find the annual growth rate of David’s investment, and express it in the form  J = Ae
kt  

. 

 

iii) In which year did the value of David’s portfolio catch up with that of Tony’s, assuming a uniform 

growth rate over the period ?    

 

Tony’s portfolio can be modelled as I = Ae
kt  

where A = 1500 (initial outlay in £) and Ae
 25k

  = 18000 

(the valuation at the end of 25 years).  

 

Thus, Ae
 25k

  = 18000  12
1500

1800025 ke  .....104503.112 25

1

ke and k = 


Since the value e

kt 
= 1.104503... when t = 1, the investment has increased by  

(1.104503 – 1)  100 % , or 10.45% after 1 year .  

 

Tony’s portfolio can be valued as  I = 1500e
0.09940t  

 

 

ii) We set up a similar equation for David’s portfolio, as  J = Ae
kt  

where A = 1200 (initial outlay in £) 

and Ae
 25k

  = 22800 (the valuation at the end of 25 years).  

 

Thus, Ae
 25k

  = 22800  19
1200

2280025 ke  .....124993.119 25

1

ke and k = 



The annual growth rate of David’s investment is 12.50% , and the equation for the value of the 

portfolio is  J  = 1200e
0.11778t  

 

 


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To find when David’s portfolio caught up in value with Tony’s, we must solve the equation in one of 

two forms:  

 

Using the equations directly in the form  Ae
kt  

: 

 

 

1500e
0.09940t   

=  1200e
0.11778t  

for t.  

 

tt ee 09940.011778.0

1200

1500








  25.1

09940.0

11778.0


t

t

e

e
 

 

 Taking natural logs (remember, dividing actual numbers means subtracting the logs), 

 

 0.11778t  – 0.09940t  = ln 1.25  0.01838t  = 0.22314,  

 

and hence 
01838.0

22314.0
t or 12.1 years. 

 

David’s portfolio therefore catches up with Tony’s 12.1 years after January 1982, or early in 1994.  

 

 

Using the equations in the form without e : 

 

Alternatively, we could take the percentage growth values of 10.450 % for Tony and 12.499% for 

David and use them  to solve the equation for t in this way: 

 

Tony’s investment can be expressed as  1500(1.10450)
t 
and David’s as 1200(1.12499)

t
 : 

 

1500(1.10450)
t
 = 1200(1.12499)

t
  tt 10450.1

1200

1500
12499.1 








  25.1

10450.1

12499.1


t

t




Taking natural logs, 

 

t ln 1.12499 – t ln 1.10450 = ln 1.25 t (ln 1.12499 – ln 1.10450)  = 0.22314 

 

t (0.11778 – 0.09940)  = 0.22314  0.01838t  = 0.22314,  

 

and hence 
01838.0

22314.0
t or 12.1 years. 

 

David’s portfolio therefore catches up with Tony’s 12.1 years after January 1982, or early in 1994.  
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Example (15): The radioactivity of a sample of phosphorus-32  was taken in terms of a Geiger counter 

reading, and the adjusted count was recorded as 1720 ‘hits’ per minute.  

 

The same sample was then locked away and another reading taken 30 days later, and then the adjusted 

count was recorded as 402 ‘hits’ per minute. 

 

Assuming that the number of ‘hits’ is proportional to the mass of the phosphorus-32 remaining, what is 

the daily decay constant k and hence the half-life of phosphorus-32 ?  (The half-life of a radioactive 

substance is the time taken for the mass, and hence the activity, to decline to one-half of its original 

value.  

 

As this is an exponential decay example,  the activity readings R are to be modelled as R = Ae
-kt

. 

 

The reading at the start (when t = 0) is 1720, so A = 1720.  

After 30 days,  the reading R = Ae
30(-k)  

= 402.  

 

Ae
30(-k)  

= 402e
30(-k)  

= 402 
1720

402)(30 ke 

 

Taking natural logarithms of both sides, 30(-k)  = ln 402 – ln 1720 
30

1720ln402ln 
 k .  

 

 -k = -0.04845. 

 

The radioactive decay constant, k, is therefore 0.04845, and the radioactive count for this particular 

sample of phosphorus-32 can be modelled by the equation R = 1720e
-0.04845t  

. 

 

To find the half-life of  phosphorus-32, we can either solve 1720e
-0.04845t 

= 860 for t, since 860 is half of 

1720, or we can simplify the question to solving e
-0.04845t 

= ½. 

   

 

We must solve 
2

104845.0  te     









2

1
ln04845.0 t  (taking logs) 

  2ln04845.0 t   (multiplying by -1 on each side)   
04845.0

2ln
t  

 

the half-life of phosphorus-32 is 
04845.0

2ln
 days or 14.3 days.  

  

 

 

Note: the step of multiplying both sides by -1 is not absolutely necessary, and is only used to provide 

positive values in the fractional expression. 

 

The expressions 
04845.0

2

1
ln












and 
04845.0

2ln
 are equivalent ! 


