
Mathematics Revision Guides – The Binomial Series for Rational Powers   Page 1 of 9 

Author: Mark Kudlowski 

 

 

M.K. HOME TUITION 

 
Mathematics Revision Guides 

Level: AS / A Level  

 

AQA : C4  Edexcel: C4   OCR: C4  OCR MEI: C4 

 

 

THE BINOMIAL SERIES FOR RATIONAL 

POWERS 
 

 
 

Version : 2.1   Date: 08-01-2016 

 

 



Mathematics Revision Guides – The Binomial Series for Rational Powers   Page 2 of 9 

Author: Mark Kudlowski 

 

 

THE BINOMIAL SERIES FOR RATIONAL n. 

 
To recap,  the general binomial expansion for (a + b)

n  
, where n is a positive integer, is   
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Notice the pattern here: powers of a decrease from n to zero, powers of b increase from zero to n, and 

in each term there is a binomial coefficient multiplier with a factorial denominator and a product of a 

series of numbers in the numerator.  

 

Recall factorials: 1! = 1;    2! = 2  1 = 2;   3! = 3  2  1 = 6;   4! = 4  3  2  1 = 24 and so forth.      

 

Substituting (1 + x)
n  

for (a + b)
n
 we have  
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This expression is simpler than the previous one, because all powers of 1 are equal to 1 itself.  

 

Finally, substituting (1 -  x)
n  

for (1 + x)
n
 in the last expression we  have  
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The terms in odd powers of x have their sign reversed – think of (1 – x) as (1 + (-x)).    

 

 

If n is a positive integer, the series will terminate at the x
n 
term, since the numerator of the fractional 

representation of the binomial coefficient will have a zero term in it, and as multiplying by 0 gives 0, 

this term and all subsequent ones will vanish.  

 

However, the formulae for (1 + x)
n
 and (1 -  x)

n  
can also be used for all other rational n, giving an 

infinite series. Provided  x lies within certain limits, the series will converge, in other words, the terms 

will become smaller as we move from left to right.  

 

A series of the form (1 + x)
n
 converges, i.e. the expansion is valid,  when |x| < 1. 

  

 If the second term of the binomial is kx where k is a non-zero constant,  the limits of convergence are 

|kx| < 1, or |x| < 
k

1
.   
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Example(1): Expand 
x1

1
up to the term in x

4
 and  state the values for which the expansion is valid.  

Use the result to find the value of 
05.1

1
to 6 decimal places.  

 

The expression can be written as (1+x)
–1 

 and therefore its binomial expansion is 

  

(1 + x)
-1

 =  1 + (-1)x + 
!2

)2)(1( 
 x

2
 +

!3

)3)(2)(1( 
 x

3
 +.

!4

)4)(3)(2)(1( 
 x

4
.............. 

1 – x + x
2
 - x

3
+ x

4
.  

 

This expansion is valid  and convergent for |x| < 1. 

 

When x  = 0.05, the series sums to 1 – 0.05 + 0.0025 – 0.000125 + 0.00000625 = 0.952381 to 6 d.p. 

 

Note that for examination purposes, questions will usually be restricted only to the term in x
2
 or x

3
.
  

 

 

Example(2): Expand 
2)21(

1

x
up to the term in x

3
  and state the values for which the expansion is 

valid.  

 

Use the result to estimate 
2)06.1(

1
to 4 decimal places. 

 

The expression can be written as (1 + 2x)
–2 

 and therefore its binomial expansion is 

 

.....)2(
!3

)4)(3)(2(
)2(

!2

)3)(2(
)2)(2(1 32 





 xxx  

 

or 1 – 4x + 12x
2
 - 32x

3
 .... 

 

This expansion is valid  and convergent for |2x| < 1, or |x| <
2
1 . 

 

When 1 + 2x = 1.06,  2x  = 0.06, and therefore x = 0.03.  

Substituting x = 0.03 in the expansion, we have  1 – 4(0.03) + 12(0.03)
2
 – 32(0.03)

3
 .... 

or  1 - 0.12 + 0.0108 – 0.000864 = 0.8899 to 4 d.p. 
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Sometimes, we may need algebraic manipulation to put the expression ‘into shape’, i.e as some 

multiple of  (1 + x)
n 
or (1 - x)

n
 . 

 

Example(3): Expand x1 up to the term in x
3
 , stating the values for which the expansion is valid.  

 

Use the result to find the value of  24 to 5 decimal places. (Hint : 24 = 25  0.96) 

 

The expression can be written as  2

1

1 x and therefore its binomial expansion is 
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(The binomial coefficients are more awkward here because of the fractions)  

 

This expansion is valid  and convergent for |x| < 1. 

 

To find 24 , we cannot substitute x = -23 and say )23(1  , as the series is only valid for |x| < 1. 

 

 

 We can, though, manipulate surds to give 24 = 96.025  = 96.0596.025  . 

 

Now we can calculate 96.0 by substituting  x = 0.04  (to give 1-x = 0.96)  into the binomial series, 

since x now is within the valid range for expansion. 

 

96.0  )000064.0()0016.0()04.0(1
16
1

8
1

2
1   

 

 1 – 0.02 – 0.0002 – 0.000004  0.979796. 

 

Multiplying the result by 5 gives 24 = 4.89898 to 5 decimal places. 
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Example(4): Expand 
x4

1
up to the term in x

3
 , stating the values for which the expansion is valid.  

 

Firstly, 
x4

1
is the same as 2

1

)4(


 x  

 

The expression inside the square root sign is not of the correct format (1 + x) for substituting into the 

binomial expansion, so we have to take out a factor of 4 as follows :  
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We now have the all-important 1 as the first term, so we can carry out the expansion :   
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This expansion is valid  and convergent for 1||
4
x  , or |x| < 4. 
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Example (5):  

i) Expand 
2)41(

1

x
in ascending powers of x, up to and including the term in x

3
 . 

ii) Find the coefficient of x
2 
in the expansion of  

2

2

)41(
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x

x




. 
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ii) Multiplying the expansion in i) by (1+3x)
2
 gives the result 

 

....)2564881( 32 xxx  )961( 2xx  . 

 

The combinations of terms contributing to the quadratic term in the product are 

(1 9x
2
), (8x 6x) and (48x

2
  1).  Their sum is (9 + 48 + 48) x

2
  or 105 x

2
. 

 

the coefficient of x
2 

in the expansion of  
2

2

)41(

)31(

x

x




 is 105. 
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Example (6): In the section “Partial Fractions”, we resolved the expression   

 

2)2)(1(
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



xx

x
 into partial fractions as  
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1
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
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An examination question could continue as follows:  

 

i) Use the formula for the sum to infinity of a geometric series to show that the binomial expansion of 

1

1

x
  forms the series .....1 32 xxx    

 

ii) Show that the expression 
2
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3
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iii) Using similar reasoning to part ii), find the binomial expansion of 
2)2(

1

x
 up to and including 

the term in x
3
. 

 

 

iv) Hence show that the binomial expansion (to the term in x
3
) of  

2)2)(1(
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can be expressed as  .17151620
16
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v) Hence use the series from iv) to find the value of  
2)2)(1(
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


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x
when x = 0.01. 

 

vi) State the range of values of x  for which the expansion is valid.   
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i) The series .....1 32 xxx   (Series A) is recognisable as a G.P. whose first term a  is -1 and 

whose common ratio r is x. Its sum to infinity is therefore   
r

a

1
or in this case 

x



1

1
or .

1

1

x
  

This expansion is valid for |x| < 1. 

 

ii) The expression 
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This expansion is valid for 1||
2
x  , or |x| < 2. 

 

 

Expanding up to the term in x
3 

we have:  
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iii) The binomial expansion of 
2)2(

1

x
 must similarly be adjusted as follows:   
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= 
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This expansion is valid for 1||
2
x  , or |x| < 2. 

 

iv) Combining the expressions for Series A, B and C gives the following results: 

(Remember that series B must be subtracted, not added !)  

 

Series A 1  x  
2x  

3x  

Series B 
(SUBTRACT !) 

2

1
 x

4

1
  

2

8

1
x  

3

16

1
x  

Series C 

4

1
 x

4

1
  

2
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3
x  

3

8

1
x  

Total 

(A – B + C) 
4

5
  

x  2
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15
x  

3

16

17
x  
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v) The binomial expansion (to the term in x
3
) of  

2)2)(1(

54





xx

x
 is therefore  

 

.....
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4

5 32
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

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
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
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By multiplying everything out by -16 and putting  
16

1
 outside the brackets, the expansion can also be 

written as   .17151620
16

1 32 xxx   

 

When x  = 0.01, 
2)2)(1(

54





xx

x
  000017.00015.016.020

16

1
  or 1.260095. 

 

Note: The actual value is  2600948.1
)01.2)(99.0(

04.5
2




. 

 

vi) Two of the terms in the combined expression are valid for 1||
2
x  , or |x| < 2. However, the 

expression for 
1

1

x
is valid only for  |x| < 1.  

 

The series as a whole  is therefore valid only for the range of its ‘strictest’ component,  i.e.  |x| < 1. 

 
 
 


