M.K. HOME TUITION

Mathematics Revision Guides
Level: AS / A Level

THE BINOMIAL SERIES FOR RATIONAL POWERS

$$
\begin{aligned}
& (1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots . .+x^{n} \\
& \begin{aligned}
& \frac{1}{1+x}=(1+x)^{-1}=1+(-1) x+\frac{(-1)(-2)}{2!} x^{2}+\frac{(-1)(-2)(-3)}{3!} x^{3}+\frac{(-1)(-2)(-3)(-4)}{4!} x^{4} \ldots \ldots \ldots \ldots . . \\
&=1-x+x^{2}-x^{3}+x^{4} . \quad|x|<1 \\
& \begin{aligned}
x=0.05 \quad \frac{1}{1.05}=1-0.05+0.0025-0.000125+0.00000625=0.952381
\end{aligned} \\
& \begin{aligned}
\frac{1}{\sqrt{4+x}}= & (4+x)^{-\frac{1}{2}}=4{ }^{-\frac{1}{2}}\left[\left(1+\frac{x}{4}\right)^{-\frac{1}{2}}\right]=\frac{1}{2}\left[\left(1+\frac{x}{4}\right)^{-\frac{1}{2}}\right] \\
& =\frac{1}{2}\left[1+\left(-\frac{1}{2}\right)\left(\frac{x}{4}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(\frac{x}{4}\right)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(\frac{x}{4}\right)^{3} \ldots \ldots\right] \\
= & \frac{1}{2}-\frac{1}{16} x+\frac{3}{256} x^{2}-\frac{5}{2048} x^{3} \ldots \ldots . \quad\left|\frac{x}{4}\right|<1, \text { or }|x|<4 .
\end{aligned} \\
& \begin{array}{l}
\frac{1}{(1-4 x)^{2}}=(1-4 x)^{-2} \\
=1+(-2)(-4 x)+\frac{(-2)(-3)}{2!}(-4 x)^{2}+\frac{(-2)(-3)(-4)}{3!}(-4 x)^{3}+\ldots \ldots . \\
=1+8 x+48 x^{2}+256 x^{3} \ldots .
\end{array}(1-x)^{n}=1-n x+\frac{n(n-1)}{2!} x^{2}-\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots . .+x^{n}
\end{aligned}
\end{aligned}
$$

THE BINOMIAL SERIES FOR RATIONAL n.

To recap, the general binomial expansion for $(a+b)^{n}$, where n is a positive integer, is
$(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{3}+\ldots . .+b^{n}$
or
$(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+\ldots . .+b^{n}$.
Notice the pattern here: powers of a decrease from n to zero, powers of b increase from zero to n, and in each term there is a binomial coefficient multiplier with a factorial denominator and a product of a series of numbers in the numerator.

Recall factorials: $1!=1 ; 2!=2 \times 1=2 ; 3!=3 \times 2 \times 1=6 ; 4!=4 \times 3 \times 2 \times 1=24$ and so forth.
Substituting $(1+x)^{n}$ for $(a+b)^{n}$ we have
$(1+x)^{n}=1+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots . .+x^{n}$
or
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots . .+x^{n}$

This expression is simpler than the previous one, because all powers of 1 are equal to 1 itself.
Finally, substituting $(1-x)^{n}$ for $(1+x)^{n}$ in the last expression we have
$(1-x)^{n}=1-\binom{n}{1} x+\binom{n}{2} x^{2}-\binom{n}{3} x^{3}+\ldots . .+(-x)^{n}$
or
$(1-x)^{n}=1-n x+\frac{n(n-1)}{2!} x^{2}-\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots . .+(-x)^{n}$
The terms in odd powers of x have their sign reversed - think of $(1-x)$ as $(1+(-x))$.

If n is a positive integer, the series will terminate at the x^{n} term, since the numerator of the fractional representation of the binomial coefficient will have a zero term in it, and as multiplying by 0 gives 0 , this term and all subsequent ones will vanish.

However, the formulae for $(1+x)^{n}$ and $(1-x)^{n}$ can also be used for all other rational n, giving an infinite series. Provided x lies within certain limits, the series will converge, in other words, the terms will become smaller as we move from left to right.

A series of the form $(1+x)^{n}$ converges, i.e. the expansion is valid, when $|x|<1$.
If the second term of the binomial is $k x$ where k is a non-zero constant, the limits of convergence are $|k x|<1$, or $|x|<\frac{1}{k}$.

Example(1): Expand $\frac{1}{1+x}$ up to the term in x^{4} and state the values for which the expansion is valid.
Use the result to find the value of $\frac{1}{1.05}$ to 6 decimal places.
The expression can be written as $(1+x)^{-1}$ and therefore its binomial expansion is
$(1+x)^{-1}=1+(-1) x+\frac{(-1)(-2)}{2!} x^{2}+\frac{(-1)(-2)(-3)}{3!} x^{3}+\frac{(-1)(-2)(-3)(-4)}{4!} x^{4} \ldots \ldots \ldots \ldots$.
$=1-x+x^{2}-x^{3}+x^{4}$.
This expansion is valid and convergent for $|x|<1$.
When $x=0.05$, the series sums to $1-0.05+0.0025-0.000125+0.00000625=0.952381$ to 6 d.p.
Note that for examination purposes, questions will usually be restricted only to the term in x^{2} or x^{3}.

Example(2): Expand $\frac{1}{(1+2 x)^{2}}$ up to the term in x^{3} and state the values for which the expansion is valid.

Use the result to estimate $\frac{1}{(1.06)^{2}}$ to 4 decimal places.
The expression can be written as $(1+2 x)^{-2}$ and therefore its binomial expansion is $1+(-2)(2 x)+\frac{(-2)(-3)}{2!}(2 x)^{2}+\frac{(-2)(-3)(-4)}{3!}(2 x)^{3}+\ldots$.
or $1-4 x+12 x^{2}-32 x^{3} \ldots$.
This expansion is valid and convergent for $|2 x|<1$, or $|x|<\frac{1}{2}$.
When $1+2 x=1.06,2 x=0.06$, and therefore $x=0.03$.
Substituting $x=0.03$ in the expansion, we have $1-4(0.03)+12(0.03)^{2}-32(0.03)^{3} \ldots$.
or $1-0.12+0.0108-0.000864=0.8899$ to $4 \mathrm{~d} . \mathrm{p}$.

Sometimes, we may need algebraic manipulation to put the expression 'into shape', i.e as some multiple of $(1+x)^{n}$ or $(1-x)^{n}$.

Example(3): Expand $\sqrt{1-x}$ up to the term in x^{3}, stating the values for which the expansion is valid.
Use the result to find the value of $\sqrt{24}$ to 5 decimal places. (Hint : $24=25 \times 0.96$)
The expression can be written as $(1-x)^{\frac{1}{2}}$ and therefore its binomial expansion is
$(1-x)^{\frac{1}{2}}=1-\frac{1}{2} x+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2}-\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!} x^{3}+\ldots \ldots . \quad$ or treat as
$(1-x)^{\frac{1}{2}}=1+\frac{1}{2}(-x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(-x)^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}(-x)^{3}+\ldots \ldots$
$=1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3} \ldots$
(The binomial coefficients are more awkward here because of the fractions)
This expansion is valid and convergent for $|x|<1$.
To find $\sqrt{24}$, we cannot substitute $x=-23$ and say $\sqrt{1-(-23)}$, as the series is only valid for $|x|<1$.

We can, though, manipulate surds to give $\sqrt{24}=\sqrt{25 \times 0.96}=\sqrt{25} \sqrt{0.96}=5 \sqrt{0.96}$.
Now we can calculate $\sqrt{0.96}$ by substituting $x=0.04$ (to give $1-x=0.96$) into the binomial series, since x now is within the valid range for expansion.

$$
\begin{aligned}
& \sqrt{0.96} \approx 1-\frac{1}{2}(0.04)-\frac{1}{8}(0.0016)-\frac{1}{16}(0.000064) \\
& \approx 1-0.02-0.0002-0.000004 \approx 0.979796
\end{aligned}
$$

Multiplying the result by 5 gives $\sqrt{24}=4.89898$ to 5 decimal places.

Example(4): Expand $\frac{1}{\sqrt{4+x}}$ up to the term in x^{3}, stating the values for which the expansion is valid.
Firstly, $\frac{1}{\sqrt{4+x}}$ is the same as $(4+x)^{-\frac{1}{2}}$
The expression inside the square root sign is not of the correct format $(1+x)$ for substituting into the binomial expansion, so we have to take out a factor of 4 as follows:

Because $(4+x)=4\left(1+\frac{x}{4}\right)$, we can say $(4+x)^{-\frac{1}{2}}=\left(4\left(1+\frac{x}{4}\right)\right)^{-\frac{1}{2}}$
$=4^{-\frac{1}{2}}\left[\left(1+\frac{x}{4}\right)^{-\frac{1}{2}}\right]$ (recall laws of indices ! $)=\frac{1}{2}\left[\left(1+\frac{x}{4}\right)^{-\frac{1}{2}}\right]$.

We now have the all-important 1 as the first term, so we can carry out the expansion :
$\frac{1}{2}\left[\left(1+\frac{x}{4}\right)^{-\frac{1}{2}}\right]=\frac{1}{2}\left[1+\left(-\frac{1}{2}\right)\left(\frac{x}{4}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(\frac{x}{4}\right)^{2}+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(\frac{x}{4}\right)^{3} \cdots \cdots ..\right]$
$=\frac{1}{2}-\frac{1}{16} x+\frac{3}{256} x^{2}-\frac{5}{2048} x^{3} \ldots \ldots$. (Do not forget the external factor of $\frac{1}{2}$).
This expansion is valid and convergent for $\left|\frac{x}{4}\right|<1$, or $|x|<4$.

Example (5):

i) Expand $\frac{1}{(1-4 x)^{2}}$ in ascending powers of x, up to and including the term in x^{3}.
ii) Find the coefficient of x^{2} in the expansion of $\frac{(1+3 x)^{2}}{(1-4 x)^{2}}$.
i) $\frac{1}{(1-4 x)^{2}}=(1-4 x)^{-2}$
$=1+(-2)(-4 x)+\frac{(-2)(-3)}{2!}(-4 x)^{2}+\frac{(-2)(-3)(-4)}{3!}(-4 x)^{3}+\ldots \ldots$
$=1+8 x+48 x^{2}+256 x^{3} \ldots$.
ii) Multiplying the expansion in i) by $(1+3 x)^{2}$ gives the result

$$
\left(1+8 x+48 x^{2}+256 x^{3} \ldots .\right)\left(1+6 x+9 x^{2}\right)
$$

The combinations of terms contributing to the quadratic term in the product are $\left(1 \times 9 x^{2}\right),(8 x \times 6 x)$ and $\left(48 x^{2} \times 1\right)$. Their sum is $(9+48+48) x^{2}$ or $105 x^{2}$.
\therefore the coefficient of x^{2} in the expansion of $\frac{(1+3 x)^{2}}{(1-4 x)^{2}}$ is 105 .

Example (6): In the section "Partial Fractions", we resolved the expression

$$
\frac{4 x+5}{(x-1)(x+2)^{2}} \text { into partial fractions as } \frac{1}{x-1}-\frac{1}{x+2}+\frac{1}{(x+2)^{2}} .
$$

An examination question could continue as follows:
i) Use the formula for the sum to infinity of a geometric series to show that the binomial expansion of $\frac{1}{x-1}$ forms the series $-1-x-x^{2}-x^{3} \ldots$.
ii) Show that the expression $\frac{1}{x+2}$ is equivalent to $\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1}$ and hence find the binomial expansion of $\frac{1}{x+2}$ up to and including the term in x^{3}.
iii) Using similar reasoning to part ii), find the binomial expansion of $\frac{1}{(x+2)^{2}}$ up to and including the term in x^{3}.
iv) Hence show that the binomial expansion (to the term in x^{3}) of $\frac{4 x+5}{(x-1)(x+2)^{2}}$ can be expressed as $-\frac{1}{16}\left(20+16 x+15 x^{2}+17 x^{3}\right)$.
v) Hence use the series from iv) to find the value of $\frac{4 x+5}{(x-1)(x+2)^{2}}$ when $x=0.01$.
vi) State the range of values of x for which the expansion is valid.
i) The series $-1-x-x^{2}-x^{3} \ldots$. (Series A) is recognisable as a G.P. whose first term a is -1 and whose common ratio r is x. Its sum to infinity is therefore $\frac{a}{1-r}$ or in this case $\frac{-1}{1-x}$ or $\frac{1}{x-1}$.
This expansion is valid for $|x|<1$.
ii) The expression $\frac{1}{x+2}$ cannot be expanded in the format $(2+x)^{-1}$, so we must rewrite it as $\left(2^{-1}\right)\left(1+\frac{x}{2}\right)^{-1}$ and hence as $\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1}$.

This expansion is valid for $\left|\frac{x}{2}\right|<1$, or $|x|<2$.

Expanding up to the term in x^{3} we have:
$\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1}=\frac{1}{2}\left[1+(-1)\left(\frac{x}{2}\right)+\frac{(-1)(-2)}{2!}\left(\frac{x}{2}\right)^{2}+\frac{(-1)(-2)(-3)}{3!}\left(\frac{x}{2}\right)^{3}+\ldots ..\right]$
$=\frac{1}{2}\left[1-\frac{1}{2} x+\frac{1}{4} x^{2}-\frac{1}{8} x^{3}+\ldots ..\right]=\frac{1}{2}-\frac{1}{4} x+\frac{1}{8} x^{2}-\frac{1}{16} x^{3} \ldots . .($ Series $\mathbf{B})$
iii) The binomial expansion of $\frac{1}{(x+2)^{2}}$ must similarly be adjusted as follows:
$\frac{1}{(x+2)^{2}}=\left(2^{-2}\right)\left(1+\frac{x}{2}\right)^{-2}=\frac{1}{4}\left(1+\frac{x}{2}\right)^{-2}$
$=\frac{1}{4}\left[1+(-2)\left(\frac{x}{2}\right)+\frac{(-2)(-3)}{2!}\left(\frac{x}{2}\right)^{2}+\frac{(-2)(-3)(-4)}{3!}\left(\frac{x}{2}\right)^{3}+\ldots ..\right]$
$=\frac{1}{4}\left[1-x+\frac{3}{4} x^{2}-\frac{1}{2} x^{3}+\ldots ..\right]=\frac{1}{4}-\frac{1}{4} x+\frac{3}{16} x^{2}-\frac{1}{8} x^{3} \ldots . .($ Series $\mathbf{C})$

This expansion is valid for $\left|\frac{x}{2}\right|<1$, or $|x|<2$.
iv) Combining the expressions for Series \mathbf{A}, \mathbf{B} and \mathbf{C} gives the following results:
(Remember that series \mathbf{B} must be subtracted, not added !)

Series A	-1	$-x$	$-x^{2}$	$-x^{3}$
Series B (SUBTRACT !)	$\frac{1}{2}$	$-\frac{1}{4} x$	$\frac{1}{8} x^{2}$	$-\frac{1}{16} x^{3}$
Series C	$\frac{1}{4}$	$-\frac{1}{4} x$	$\frac{3}{16} x^{2}$	$-\frac{1}{8} x^{3}$
Total (A - B + C)	$-\frac{5}{4}$	$-x$	$-\frac{15}{16} x^{2}$	$-\frac{17}{16} x^{3}$

v) The binomial expansion (to the term in x^{3}) of $\frac{4 x+5}{(x-1)(x+2)^{2}}$ is therefore

$$
-\left(\frac{5}{4}\right)-x-\left(\frac{15}{16} x^{2}\right)-\left(\frac{17}{16} x^{3}\right) \cdots
$$

By multiplying everything out by -16 and putting $-\frac{1}{16}$ outside the brackets, the expansion can also be written as $-\frac{1}{16}\left(20+16 x+15 x^{2}+17 x^{3}\right)$.

When $x=0.01, \frac{4 x+5}{(x-1)(x+2)^{2}} \approx-\frac{1}{16}(20+0.16+0.0015+0.000017)$ or 1.260095 .
Note: The actual value is $\frac{5.04}{(-0.99)(2.01)^{2}}=-1.2600948$.
vi) Two of the terms in the combined expression are valid for $\left|\frac{x}{2}\right|<1$, or $|x|<2$. However, the expression for $\frac{1}{x-1}$ is valid only for $|x|<1$.

The series as a whole is therefore valid only for the range of its 'strictest' component, i.e. $|x|<1$.

