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PARAMETRIC INTEGRATION 

(Edexcel only) 

  
A curve can be defined in parametric form - for instance, x could be defined as f(t) and y as g(t), with t 

as the parameter.  

 

The formula for the area under a curve can be adapted for parametric integrals as follows:  
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Example (1):  

 

A curve is defined parametrically as  

 x  = 1 - t , y =  e
t
 – 1. 

 

 Its graph is shown on the right. 

 

Using parametric methods, find the area 

of region R enclosed by the curve, the x-

axis and  the line x = -1.   

 

Give your answer in an exact form.  

 

   

 

 

 

 

 

 

Preparatory working :  

 

Change x – limits to t – limits; x  = 1 – t   t  = 1 – x ,  so when   x  = 1, t  = 0;  x  = -1, t  = 2.   

Find 
dt

dx
; here it is simply -1.  

 

 

The area  R under the curve is given by  
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Note the reversal of the limits and the multiplication by -1 in the working.  
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Example (2): The curve shown here has 

parametric equations  

 

x  = 8 cos t,   y = 4 sin 2t, where 0 t /2. 

 

The point P lies on the curve and its 

coordinates are (4, 23). 

 

 

i) Find the value of t at the point P. 

 

ii) Use parametric integration to find the 

area of region R enclosed by the curve, the 

x-axis and the line x = 4, giving the answer 

in an exact form.  

 

Hint :    ttt
dt

d
cossin3sin 23  . 

 

 

i) At point P, 8 cos t  = 4 
2
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3


t . 

ii) t
dt

dx
sin8 ; also at  x  = 0, 8 cos t = 0   0cos t 

2


t . 

 

To find the area of region R we transform the integrand from 
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This final integrand  is the inverse of the result   ttt
dt

d
cossin3sin 23  stated earlier in the hint, 

but multiplied by the scale factor of 
3

64
. 

The area of R is therefore dttt
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(Copyright Edexcel, GCE Mathematics Paper 6666,  June 2008, part of Q.8) 
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For enclosed curves, a negative integral results from tracing the curve in an anticlockwise direction; a 

positive one results from tracing the curve clockwise.  

 

Example (3): Using parametric integration, find the area of the circle defined by x=6 cos , y= 6 sin , 

for 0  2.    
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We use the trigonometric identity sin
2
 = ½(1 –  cos 2) to evaluate the integral.  
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(The resulting integral is negative because the circle has been traced out in an anticlockwise direction.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example (4): Using parametric integration, find the area of the ellipse defined by x=5 cos , y= 2 sin , 

for 0  2.    
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Again using sin
2
 = ½(1 –  cos 2), the integrand becomes  
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The last examples lead us to the general result: for any ellipse defined by x=a cos , y= b sin ,  the 

area will be ab.   


