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Introduction to Algebraic Proof.  
 

This section is a brief introduction to on how to prove mathematical conjectures using algebra.  

 

The following methods are the ones normally encountered at GCSE :   

 

 Proof by algebraic reasoning 

 Proof by exhaustion 

 Disproof by counterexample 

 

  

The important thing about proving a conjecture is that ‘every step must be justified’. 

 

  

Proof by algebraic reasoning. 

 

This uses mathematical logic and uses well-established results to prove a conjecture or a theorem. 

 

Example (1):  The “Fibonacci” sequence is defined by the following rules: 

 

 The first two terms are 1 and 1.  

 Each subsequent term is generated by adding together the two previous ones.      

 

The first terms of the sequence are  1, 1, 2, 3, 5, 8, 13 ..... 

 

A curious fact is that the fifth term of the sequence is 5, and the sum of the first six terms is  

 

1 + 1 + 2 + 3 + 5 + 8  = 20, which is four  times the fifth term.  

 

This might seem unremarkable, but if we start with any numbers other than 1 and 1 and follow the 

same rules, the sum of the first six terms is still four  times the fifth number  !  

 

Take the sequence  1, 3, 4, 7, 11, 18, 29 ....   

The fifth term is 11, and the sum of the first six terms is 4 times 11, or 44 !  

  

Prove that this rule holds true for all generalised Fibonacci sequences !  

 

Call  the first two terms of such a sequence  p and q. 

 

The table shows the first six terms, along with their total sum :  

 

Term No. Value 

1 p 

2 q 

3 p  + q  

4 p  + 2q 

5 2p  + 3q 

6 3p  + 5q 

Sum of 6  8p  + 12q 

 

 The fifth term is 2p  +  3q and the sum of the six terms is 8p  + 12q  = 4(2p  + 3q). 

 

Hence the sum of the first six terms of any generalised Fibonacci sequence is always four times the 

fifth term.  
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Example (2): By looking at the square numbers of 9, 25, 49 and 81, it can be seen that they all leave a 

remainder of 1 when divided by 4. 

  

Prove that this fact holds true for all odd square numbers greater than 1.  

 

Any odd number greater than 1 can be expressed as 2k + 1 where k is a positive integer.  

Squaring, we have (2k + 1)
2
 = 4k

2
 + 4k + 1. 

Subtracting the remainder of 1 gives us  4k
2
 + 4k which factorises into 4(k

2
 + k) 

  

Hence (2k + 1)
2
 = 4k

2
 + 4k + 1 = 4(k

2
 + k) + 1.  

This right-hand expression  is a multiple of 4 plus a remainder of 1.  

 

 

Example (3): Prove that (n + 5)
2
 – (n + 1)

2
 is a multiple of 8 for all integers n. 

 

Here we must expand and simplify the expression, and then show that we can take out a factor of 8.  

 

Proof:  

 

(n + 5)
2
 – (n + 1)

2 
= (n

2
 + 10n + 25) – (n

2
 + 2n + 1)  = 8n + 24  

The last expression can have a factor of 8 taken out:  8n + 24  = 8(n + 3). 

 

 (n + 5)
2
 – (n + 1)

2
 is a multiple of 8 for all integers n. 
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Proof by exhaustion. 

 

This uses exhaustive testing when the set of results to be tested is finite. This is often used together 

with mathematical reasoning.  

 

 

Example (4) (Harder):  Prove that no square number ends in 2, 3, 7 or 8. 

 

We begin by taking the squares of the integers from 0 to 9; they are 0, 1, 4, 9, 16, 25, 36, 49, 64 and 81.   

 

Next, we can express any integer greater than 10 as  10m + n where m and n are integers, 

m > 0 and  0  n  9. 

 

Squaring 10m + n gives 100m
2
 + 20mn + n

2
  = 10m(10m + 2n) + n

2
.  

 

The terms involving m are divisible by 10, and so the value of m will have no effect on the last (‘units’) 

digit in the square, i.e. (10m + n)
2
 ends in the same digit as n

2
. 

 

(For example, the squares of 17, 27, 37,.... end in 9 because the square of 7 does so). 

 

The squares of the integers from 0 to 9 have a ‘units’ digit of 0, 1, 4, 5, 6 and 9 – there are none ending 

in 2, 3, 7 or 8.  

 

no square number ends in 2, 3, 7 or 8. 
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Disproof by counterexample.  

 

When we had to prove conjectures to be true in the earlier examples, we had to use exhaustive and 

rigorous methods.  It is easier to disprove a statement, as a single counterexample suffices.  

 

Example (5): Carl states : “The square of any number less than 1 is less than the number itself”. 

 

Prove that Carl’s statement is incorrect.  

 

At first, Carl’s reasoning seems sound enough. If we square one half, we obtain a quarter, and when we 

square 0.1, we have 0.01.   

  

However, we run into difficulties when we consider zero or negative numbers:  

 

The number  -2 is less than 1, but its square is 4, which is greater than -2.   

The square of 0 is 0.  

 

 

Example (6): Prem has tabulated the values of  x
2
 + x + 11 for the first few positive integers:  

 

 

x x
2
 + x + 11 

1 13 

2 17 

3 23 

4 31 

5 41 

6 53 

 

He notices that all the calculated values are prime, and claims : 

“The value of x
2
 + x + 11 is prime for all positive x.”  

 

Prove whether Prem’s claim is true or false 

 

Substituting values x = 7, 8 and 9  gives  x
2
 + x + 11 = 67, 83, 101... , which are all prime. 

Unfortunately if  x  = 10 , then x
2
 + x + 11 = 121 which is not a prime, it being the square of 11. 

 

Hence Prem’s conjecture is false. 

 

 

 


