M.K. HOME TUITION

Mathematics Revision Guides Level: GCSE Foundation Tier

INTRODUCTION TO ALGEBRAIC PROOF

cimito.	Value		
1	р		
2	<i>q</i>		
3	p + q		
4	p + 2q		
5	2p + 3q		
6	3p + 5q	(2k+1)	$)^2 = 4k^2 + 4k + 1$
7	5p + 8q		·
8	8p + 13q		$=4(k^2+k)+1.$
9	13p + 21q		
10	21p + 34q		
sum of 10	55p + 88q		
$(n+5)^2$ –	$(n+1)^2$		
$(n+5)^2 - (n^2 + 10n)$	$(n+1)^2$ + 25) - $(n^2 + 2n + 1)^2$)	
$(n+5)^2 - (n^2 + 10n)$	$(n+1)^2$ + 25) - $(n^2 + 2n + 1)^2$)	$x^2 + x + 11$
$(n+5)^2 - (n^2 + 10n)^2$ $(n^2 + 10n)^2$ $(n^2 + 24 = -10)^2$	$(n+1)^2$ + 25) - $(n^2 + 2n + 1)^2$ = 8(n+3).) $\frac{x}{1}$	$x^2 + x + 11$ 13
$(n+5)^2 - (n^2 + 10n)^2$ $(n^2 + 10n)^2$ $(n^2 + 24) = (n^2 + 10)^2$	$(n+1)^2$ + 25) - $(n^2 + 2n + 1)^2$ = 8(n+3).) $\frac{x}{1}$ 2	
$(n+5)^2 - (n^2 + 10n)^2$ $(n^2 + 10n)^2$ $(n^2 + 24) = (n^2 + 10n)^2$	$(n+1)^2$ + 25) - $(n^2 + 2n + 1)^2$ = 8(n+3).) $\frac{x}{1}$ 2 3	
$(n+5)^2 - (n^2 + 10n)^2$ 8n + 24 = -100	$(n+1)^2$ + 25) - $(n^2 + 2n + 1)^2$ = 8(n+3).) $\frac{x}{1}$ $\frac{1}{2}$ $\frac{3}{4}$	
$(n+5)^2 - (n^2 + 10n)^2$ 8n + 24 = -	$(n+1)^2$ + 25) - $(n^2 + 2n + 1)^2$ = 8(n+3).) $\frac{x}{1}$ 2 3 4 5	
$(n+5)^2 - (n^2 + 10n)^2$ 8n + 24 = -	$(n+1)^2$ + 25) - $(n^2 + 2n + 1)^2$ = 8(n+3).) $\frac{x}{1}$ 2 3 4 5 6	

Version : 1.2

Date: 14-03-2015

Introduction to Algebraic Proof.

This section is a brief introduction to on how to prove mathematical conjectures using algebra.

The following methods are the ones normally encountered at GCSE :

- Proof by algebraic reasoning
- Proof by exhaustion
- Disproof by counterexample

The important thing about proving a conjecture is that 'every step must be justified'.

Proof by algebraic reasoning.

This uses mathematical logic and uses well-established results to prove a conjecture or a theorem.

Example (1): The "Fibonacci" sequence is defined by the following rules:

- The first two terms are 1 and 1.
- Each subsequent term is generated by adding together the two previous ones.

The first terms of the sequence are 1, 1, 2, 3, 5, 8, 13

A curious fact is that the fifth term of the sequence is 5, and the sum of the first six terms is

1 + 1 + 2 + 3 + 5 + 8 = 20, which is four times the fifth term.

This might seem unremarkable, but if we start with any numbers other than 1 and 1 and follow the same rules, the sum of the first six terms is still four times the fifth number !

Take the sequence 1, 3, 4, 7, 11, 18, 29 The fifth term is 11, and the sum of the first six terms is 4 times 11, or 44 !

Prove that this rule holds true for all generalised Fibonacci sequences !

Call the first two terms of such a sequence p and q.

The table shows the first six terms, along with their total sum :

Term No.	Value
1	р
2	q
3	p + q
4	p + 2q
5	2p + 3q
6	3p + 5q
Sum of 6	8p + 12q

The fifth term is 2p + 3q and the sum of the six terms is 8p + 12q = 4(2p + 3q).

Hence the sum of the first six terms of any generalised Fibonacci sequence is always four times the fifth term.

Mathematics Revision Guides – Introduction to Algebraic Proof Author: Mark Kudlowski

Example (2): By looking at the square numbers of 9, 25, 49 and 81, it can be seen that they all leave a remainder of 1 when divided by 4.

Prove that this fact holds true for all odd square numbers greater than 1.

Any odd number greater than 1 can be expressed as 2k + 1 where k is a positive integer. Squaring, we have $(2k + 1)^2 = 4k^2 + 4k + 1$. Subtracting the remainder of 1 gives us $4k^2 + 4k$ which factorises into $4(k^2 + k)$

Hence $(2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$. This right-hand expression is a multiple of 4 plus a remainder of 1.

Example (3): Prove that $(n + 5)^2 - (n + 1)^2$ is a multiple of 8 for all integers *n*.

Here we must expand and simplify the expression, and then show that we can take out a factor of 8.

Proof:

 $(n+5)^2 - (n+1)^2 = (n^2 + 10n + 25) - (n^2 + 2n + 1) = 8n + 24$ The last expression can have a factor of 8 taken out: 8n + 24 = 8(n+3).

 $\therefore (n+5)^2 - (n+1)^2$ is a multiple of 8 for all integers *n*.

Proof by exhaustion.

This uses exhaustive testing when the set of results to be tested is finite. This is often used together with mathematical reasoning.

Example (4) (Harder): Prove that no square number ends in 2, 3, 7 or 8.

We begin by taking the squares of the integers from 0 to 9; they are 0, 1, 4, 9, 16, 25, 36, 49, 64 and 81.

Next, we can express any integer greater than 10 as 10m + n where *m* and *n* are integers, m > 0 and $0 \le n \le 9$.

Squaring 10m + n gives $100m^2 + 20mn + n^2 = 10m(10m + 2n) + n^2$.

The terms involving *m* are divisible by 10, and so the value of *m* will have no effect on the last ('units') digit in the square, i.e. $(10m + n)^2$ ends in the same digit as n^2 .

(For example, the squares of 17, 27, 37,.... end in 9 because the square of 7 does so).

The squares of the integers from 0 to 9 have a 'units' digit of 0, 1, 4, 5, 6 and 9 – there are none ending in 2, 3, 7 or 8.

 \therefore no square number ends in 2, 3, 7 or 8.

Disproof by counterexample.

When we had to prove conjectures to be true in the earlier examples, we had to use exhaustive and rigorous methods. It is easier to disprove a statement, as a single counterexample suffices.

Example (5): Carl states : "The square of any number less than 1 is less than the number itself".

Prove that Carl's statement is incorrect.

At first, Carl's reasoning seems sound enough. If we square one half, we obtain a quarter, and when we square 0.1, we have 0.01.

However, we run into difficulties when we consider zero or negative numbers:

The number -2 is less than 1, but its square is 4, which is greater than -2. The square of 0 is 0.

Example (6): Prem has tabulated the values of $x^2 + x + 11$ for the first few positive integers:

x	$x^2 + x + 11$
1	13
2	17
3	23
4	31
5	41
6	53

He notices that all the calculated values are prime, and claims : "The value of $x^2 + x + 11$ is prime for all positive x."

Prove whether Prem's claim is true or false

Substituting values x = 7, 8 and 9 gives $x^2 + x + 11 = 67$, 83, 101..., which are all prime. Unfortunately if x = 10, then $x^2 + x + 11 = 121$ which is not a prime, it being the square of 11.

Hence Prem's conjecture is false.