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Introduction to Algebraic Proof.
This section is a brief introduction to on how to prove mathematical conjectures using algebra.
The following methods are the ones normally encountered at GCSE :

e  Proof by algebraic reasoning
e  Proof by exhaustion
e Disproof by counterexample

The important thing about proving a conjecture is that ‘every step must be justified’.

Example (1) : Prove that the product of three consecutive positive integers is a multiple of 6.

We cannot just say “1 x 2 x3=6,2x 3 x4 =24, 3 x4 x5=60. It works for those examples, so it
works in all cases.“ We need to be more rigorous than that !

i) We can take sequences of three consecutive positive integers such as 1-2-3, 2-3-4 and 3-4-5 and see
that at least one of them must be even and that one is a multiple of 3.

ii) The product must therefore have factors of both 2 and 3. The L.C.M. of 2 and 3 is 6, since 2 and 3
have no common factor.

.. The product of three consecutive positive integers is a multiple of 6.
Is this proof ? No, as far as statement i) is concerned. Looking at the number sequences and observing a

pattern is not rigorous enough to justify the argument. Statement ii) is rigorous and concise, and thus
can be left as it is when rewriting the ‘proof”.

True proof:

To prove that the product of three consecutive positive integers is a multiple of 6 we must choose the
general case of three consecutive positive integers: k, k+1 and k+2 and use the properties of division of
integers.

First we check for the presence of even integers. The integer k can either be even (have no remainder
on dividing by 2) or odd (have remainder of 1 on dividing by 2).

If k is even, then the product is even (is a multiple of 2). If k is odd , then k + 1 will be even because
the sum of two odd numbers is even, and so the product will be even due to the k+1 term.

By similar logic, the integer k can have three possible remainders when it is divided by 3.
It can be a multiple of 3 (no remainder), or will have a remainder of 1 or 2.

If dividing k by 3 leaves a remainder of 2, then k + 1 will be a multiple of 3; if dividing k by 3 leaves a
remainder of 1, then k + 2 will be a multiple of 3.

Therefore there will always be one number of the sequence divisible by 3.

The product must therefore have factors of both 2 and 3. The L.C.M. of 2 and 3 is 6, since 2 and 3 have
no common factor.

.. The product of three consecutive positive integers is a multiple of 6 (the L.C.M. of 2 and 3).

The proof in Example 1 used a combination of exhaustion and mathematical reasoning. Here are a few
more examples with full working:
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Proof by algebraic reasoning.
This uses mathematical logic and uses well-established results to prove a conjecture or a theorem.
Example (2): The “Fibonacci” sequence is defined by the following rules:

e The first two terms are 1 and 1.
e Each subsequent term is generated by adding together the two previous ones.

The first ten terms of the sequence are 1,1, 2, 3,5, 8, 13, 21, 34,55 .
A curious fact is that the seventh term of the sequence is 13, and the sum of the first ten terms is
1+1+2+3+5+8+13+21+ 34 +55=143, which is 11 times the seventh term..

This might seem unremarkable, but if we generate a similar sequence (aka a Lucas sequence) with any
starting numbers other than 1 and 1, the sum of the first ten terms is still 11 times the seventh number !

Take the sequence 1, 3,4, 7,11, 18, 29, 47, 76, 123. The seventh term is 29, and the sum of the first
ten terms is 11 times 29, or 319 !

Prove that this rule holds true for all generalised Fibonacci sequences !
Call the first two terms of such a sequence p and g.

The table shows the first ten terms, along with their total sum :

Term No. | Value

p

q

P+q

P +2q

2p +3q

3p +5q

5p +8q

8p +13q

13p +21q

O|O|O|NOO|A~WIN|F-

[EY

21p + 34q

Sum of 10 | 55p + 88q

The seventh term is 5p + 8q and the sum of the ten terms is 55p +88q = 11(5p + 8q).

Hence the sum of the first 10 terms of any generalised Fibonacci (Lucas) sequence is always 11 times
the seventh term.

Example (3): By looking at the square numbers of 9, 25, 49 and 81, it can be seen that they all leave a
remainder of 1 when divided by 4.

Prove that this fact holds true for all odd square numbers greater than 1.

Any odd number greater than 1 can be expressed as 2k + 1 where k is a positive integer.

Squaring, we have (2k + 1)? = 4k® + 4k + 1.

Subtracting the remainder of 1 gives us 4k’ + 4k which factorises into 4(k® + k)

Hence (2k + 1)° = 4k* + 4k + 1 = 4(K* + k) + 1.
This right-hand expression is a multiple of 4 plus a remainder of 1.
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Example (4): Prove that (n + 5)% — (n + 1)? is a multiple of 8 for all integers n.

Here we must expand and simplify the expression, and then take out a factor of 8.

Proof:

(n+5)2—(n+1)*= (n?+10n + 25) — (N> + 2n + 1) =8n+ 24 =8(n + 3).

The right-hand expression is evidently a multiple of 8.

Proof by exhaustion.

This uses exhaustive testing when the set of results to be tested is finite. This is often used together
with mathematical reasoning.

Example (5): Prove that no square number ends in 2, 3, 7 or 8.

We begin by taking the squares of the integers from 0 to 9; they are 0, 1, 4, 9, 16, 25, 36, 49, 64 and 81.

Next, we can express any integer greater than 10 as 10m + n where m and n are integers,
m>0and 0<n<9.

Squaring 10m + n gives 100m? + 20mn + n? = 10m(10m + 2n) + n.

The terms involving m are divisible by 10, and so the value of m will have no effect on the last (‘units’)
digit in the square, i.e. (10m + n)? ends in the same digit as n*.

(For example, the squares of 17, 27, 37,.... end in 9 because the square of 7 does s0).

The squares of the integers from 0 to 9 have a “units’ digit of 0, 1, 4, 5, 6 and 9 — there are none ending
in2,3,7or8.

.. no square number ends in 2, 3, 7 or 8.
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Example (6): The graph of y = x? is shown

on the right, along with the chord joining the
points (-10,100) and (5, 25). The y-intercept of
the chord can be seen to be 10 x 5, or 50.

If the chord were to connect (-6,36) to (8,64),
then the y-intercept would be 6 x 8, or 48.

Prove algebraically that any general chord
connecting (-a, a?) and (b, b%)

intersects the y-axis at (0, ab).

(Note that the square of —a is equal to the
square of a).

Intercept (0,50)

We need to find the equation of the chord
connecting (-a, a%) and (b, b?) .

(-a,a%)

2 2 yx2

Its gradient is
b-(-a)

_(b+a)b-a)
~ b+a

=b-a.

Intercept (0,ab)
Its general equation is y = mx+ ¢ where m is the
gradient and c is the y-intercept.

Substituting (b, b?) for (x, y) we have
2 2 _ 2 (b,b%)
b = (b-a)b + c and thus b“=b“ - ab + c.

Subtracting b?from both sides and rearranging,

c—ab =0 and thus ¢ = ab.

The equation of the chord is therefore
y = (b-a)x + ab.

Hence when x =0, y = ab.

In other words, the y-intercept of the chord connecting (-a, a°) and (b, b?) is always (0, ab).
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Disproof by counterexample.

When we had to prove conjectures to be true in the earlier examples, we had to use exhaustive and
rigorous methods. Disproving a conjecture is easier - a single counterexample suffices.

Example (7): Carl states :
“The square of any number less than 1 is less than the number itself”

i) Prove that Carl’s statement is incorrect as it stands.
ii) How can Carl’s statement be made correct by just adding one word ?

i) At first, Carl’s reasoning seems sound enough. If we square one half, we obtain a quarter, and when
we square 0.1, we have 0.01.

However, we run into difficulties when we consider zero or negative numbers:

The number -2 is less than 1, but its square is 4, which is greater than -2.
The square of 0 is 0.

i) Carl’s statement can be corrected to read

“The square of any positive number less than 1 is less than the number itself”.

Example (8): Prem has tabulated the values of x*+ x + 11 for the first few positive integers:

X+ x+ 11

13

17

23

31

41

U WIN|FP (X

53

He notices that all the calculated values are prime, and conjectures :
“The value of X’ + x + 11 is prime for all positive x.”

Prove whether Prem’s conjecture is true or false

Substituting values x = 7, 8and 9 gives x*+ x + 11 = 67, 83, 101..., which are all prime.
Unfortunately if x =10, then x* + x + 11 = 121 which is not a prime, it being the square of 11.

Hence Prem’s conjecture is false.

Alternatively, we could have substituted x = 11 to obtain 11? + 11 + 11, which can have the factor of
11 taken out to give = 11(11 + 1 + 1) or 11 x 13 = 143 — again disproving the conjecture.
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